Skip to main content
Log in

Nikol’skii inequality between the uniform norm and L q -norm with jacobi weight of algebraic polynomials on an interval

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We study the Nikol’skii inequality for algebraic polynomials on the interval [−1, 1] between the uniform norm and the norm of the space L (α,β) q , 1 ≤ q < ∞, with the Jacobi weight ϕ(α,β)(x) = (1 − x)α(1 + x)β, αβ > −1. We prove that, in the case α > β ≥ −1/2, the polynomial with unit leading coefficient that deviates least from zero in the space L (α+1,,β) q with the Jacobi weight ϕ (α+1,β)(x) = (1−x)α+1(1+x)β is the unique extremal polynomial in the Nikol’skii inequality. To prove this result, we use the generalized translation operator associated with the Jacobi weight. We describe the set of all functions at which the norm of this operator in the space L (α,β) q for 1 ≤ q < ∞ and α > β ≥ −1/2 is attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Arestov, Inequality of different metrics for trigonometric polynomials, Math. Notes, 27:4 (1980), 265–269.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. AN SSSR, Ser. Mat., 45:1 (1981), 3–22 (in Russian); translated in Math. USSR Izv., 18:1 (1982), 1–17.

    MathSciNet  Google Scholar 

  3. V. V. Arestov and M. V. Deikalova, Nikolskii inequality for algebraic polynomials on a multidimensional Euclidean sphere, Trudy Inst. Mat. Mekh. Ural’sk. Otdel. Ross. Akad. Nauk, 19:2 (2013), 34–47 (in Russian); translated in Proc. Steklov Inst. Math., 284 (suppl. 1) (2014), S9–S23.

    MathSciNet  MATH  Google Scholar 

  4. V. Arestov and M. Deikalova, Nikol’skii inequality between the uniform norm and L q-norm with ultraspherical weight of algebraic polynomials on an interval, Comput. Methods Funct. Theory, 15 (2015), 689–708.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. V. Arestov and P. Yu. Glazyrina, Sharp integral inequalities for fractional derivatives of trigonometric polynomials, J. Approx. Theory 164 (2012), 1501–1512.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Askey, Orthogonal polynomials and special functions, SIAM (Philadelphia, Pa, 1975).

    Book  MATH  Google Scholar 

  7. R. Askey and S. Wainger, A convolution structure for Jacobi series, Amer. J. Math., 91 (1969), 463–485.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. G. Babenko, An exact Jackson–Stechkin inequality for L2-approximation on the interval with the Jacobi weight and on projective spaces, Izv. Math., 62:6 (1998), 1095–1119.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. G. Babenko, Yu. V. Kryakin, and V. A. Yudin, On a result by Geronimus, Trudy Inst. Mat. Mekh. Ural’sk. Otdel. Ross. Akad. Nauk, 16:4 (2010), 54–64 (in Russian); translated in Proc. Steklov. Inst. Math., 273 (suppl. 1) (2011), 37–48.

    MATH  Google Scholar 

  10. V. Babenko, V. Kofanov, and S. Pichugov, Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions, in Approximation theory: A volume dedicated to Blagovest Sendov, Ed. by B. Bojanov, Darba (Sofia, 2002), pp. 24–53.

    Google Scholar 

  11. V. M. Badkov, Asymptotic and extremal properties of orthogonal polynomials with singularities in the weight, Trudy Mat. Inst. Steklov, 198 (1992), 41–88 (in Russian); translated in Proc. Steklov Inst. Math. 198 (1994), 37–82.

    MathSciNet  MATH  Google Scholar 

  12. H. Bavinck, A special class of Jacobi series and some applications, J. Math. Anal. Appl., 37 (1972), 767–797.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. N. Bernstein, Collected works, vol. 1, Izd. Akad. Nauk SSSR (Moscow, 1952).

    MATH  Google Scholar 

  14. B. Bojanov, Polynomial inequalities, in: Proc. Int. Conf. “Open Problems in Approximation Theory” (Voneshta voda, Bulgaria, June 18–24, 1993), Science Culture Technology Publishing (Singapore, 1994), pp. 25–42.

    Google Scholar 

  15. P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathemathics, 161, Springer New York, 1995).

    Book  Google Scholar 

  16. A. P. Calderon and G. Klein, On an extremum problem concerning trigonometrical polynomials, Studia Math., 12 (1951), 166–169.

    MathSciNet  MATH  Google Scholar 

  17. P. L. Chebyshev, Theory of mechanisms known as parallelograms, in: Complete Collection of Works in Five Volumes, Vol. 2, Mathematical Analysis, Izd. Akad. Nauk SSSR (Moscow, 1947), pp. 23–51 (in Russian).

    Google Scholar 

  18. I. K. Daugavet and S. Z. Rafal’son, Certain inequalities of Markov–Nikolskii type for algebraic polynomials, Vestnik Leningrad. Univ., 1 (1972), 15–25.

    MathSciNet  MATH  Google Scholar 

  19. M. V. Deikalova and V. V. Rogozina, Jackson–Nikol’skii inequality between the uniform and integral norms of algebraic polynomials on a Euclidean sphere, Trudy Inst. Mat. Mekh. Ural’sk. Otdel. Ross. Akad. Nauk, 18:4 (2012), 162–171.

    Google Scholar 

  20. R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer Berlin, New York, 1993).

    Book  MATH  Google Scholar 

  21. Z. Ditzian and S. Tikhonov, Ul’yanov and Nikol’skii-type inequalities, J. Approx. Theory, 133 (2005), 100–133.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Gasper, Positivity and the convolution structure for Jacobi series, Ann. Math., 93 (1971), 112–118.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Geronimus, Sur quelques propriétés extrémales de polynomes dont les coefficients premiers sont donnés, Soobshch. Khar’k. Mat. O-va, 12 (1935), 49–59.

    MATH  Google Scholar 

  24. V. E. Gheit, On polynomials that deviate least from zero in the metric of L[1, 1] (third communication), Sib. Zh. Vychisl. Mat., 6:1 (2003), 37–57 (in Russian).

    Google Scholar 

  25. V. E. Gheit and V. V. Gheit, Polynomials of least deviation from zero in the L[-1, 1] metric with five fixed coefficients, Sib. Zh. Vychisl. Mat., 12:1 (2009), 29–40 (in Russian); translated in Numer. Anal. Appl., 2:1 (2009), 24–33.

    MATH  Google Scholar 

  26. P. Yu. Glazyrina, The Markov brothers inequality in L0-space on an interval, Math. Notes, 78:1-2 (2005), 53–58.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Yu. Glazyrina, Markov–Nikol’skii inequality for the spaces Lq, L0 on a segment, Trudy Inst. Mat. Mekh. Ural’sk. Otdel. Ross. Akad. Nauk 11:2 (2005), 60–71 (in Russian); translated in Proc. Steklov Inst. Math. (2005) (suppl. 2), S104–S116.

    MathSciNet  Google Scholar 

  28. P. Yu. Glazyrina, The sharp Markov–Nikolskii inequality for algebraic polynomials in the spaces Lq and L0 on a closed interval, Math. Notes, 84:1–2 (2008), 3–21.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. V. Gorbachev, Selected Problems in Functional Analysis and Approximation Theory and Their Applications, Grif i K (Tula, 2004) (in Russian).

  30. D. V. Gorbachev, An integral problem of Konyagin and the (C,L)-constants of Nikol’skii, Trudy Inst. Mat. Mekh. URO RAN, 11:2 (2005), 72–91 (in Russian); translated in Proc. Steklov Inst. Math. (2005) (suppl. 2), S117–S138.

    MathSciNet  MATH  Google Scholar 

  31. V. I. Ivanov, Certain inequalities in various metrics for trigonometric polynomials and their derivatives, Math. Notes, 18:4 (1975), 880–885.

    Article  MATH  Google Scholar 

  32. V. I. Ivanov, Some extremal properties of polynomials and inverse inequalities of approximation theory, Trudy MIAN SSSR, 145 (1980), 79–110 (in Russian); translated in Proc. Steklov Inst. Math., 145 (1981), 85–120.

    MathSciNet  MATH  Google Scholar 

  33. D. Jackson, Certain problems of closest approximation, Bull. Amer. Math. Soc., 39 (1933), 889–906.

    Article  MathSciNet  MATH  Google Scholar 

  34. V. A. Kofanov, Sharp inequalities of Bernstein and Kolmogorov type, East J. Approx., 11 (2005), 131–145.

    MathSciNet  MATH  Google Scholar 

  35. S. V. Konyagin, Bounds on the derivatives of polynomials, Dokl. Akad. Nauk SSSR, 243:5 (1978), 1116–1118 (in Russian); translated in Soviet Math. Dokl., 19:6 (1978), 1477–1480.

    MathSciNet  MATH  Google Scholar 

  36. T. Koornwinder, Jacobi polynomials. An analytic proof of the product formula, SIAM J. Math. Anal., 5 (1974), 125–137.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Korkine and G. Zolotareff, Sur une certain minimum, Nouv. Ann. Math., Ser. 2, 12 (1873), 337–355; Collected papers of A. N. Korkin, St. Petersburg Univ. (St. Petersburg, 1911), Vol. 1, pp. 329–349.

    Google Scholar 

  38. N. P. Korneichuk, Extremal Problems of Approximation Theory, Nauka Moscow, 1976) (in Russian).

    Google Scholar 

  39. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal properties of polynomials and splines, Naukova Dumka Kiev, 1992) (in Russian); translated Nova Science Publishers (Commack, NY, 1996).

    MATH  Google Scholar 

  40. Le A. M. Gendre, Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures, 2 (Paris, 1817).

    Google Scholar 

  41. A. L. Lukashov, On Chebyshev–Markov rational functions over several intervals, J. Approx. Theory, 95 (1998), 333–352.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Lukashov and S. Tyshkevich, On trigonometric polynomials deviating least from zero on an interval, J. Approx. Theory, 168 (2013), 18–32.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Lupas, An inequality for polynomials, Univ. Beograd. Publ. Electrotehn. Fak. Sep. Mat. Fiz., 461–497(1974), 241–243.

    MathSciNet  MATH  Google Scholar 

  44. G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Singapore, 1994).

    Book  MATH  Google Scholar 

  45. S. M. Nikol’skii, Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables, Trudy MIAN SSSR, 38 (1951), 244–278 (in Russian).

    MathSciNet  Google Scholar 

  46. S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems, Nauka Moscow, 1977) (in Russian).

    MATH  Google Scholar 

  47. F. Peherstorfer, On the representation of extremal functions in the L1-norm, J. Approx. Theory, 27 (1978), 61–75.

    Article  MathSciNet  Google Scholar 

  48. F. Peherstorfer, Trigonometric polynomial approximation in the L1-norm, Math. Z., 169 (1979), 261–269.

    Article  MathSciNet  MATH  Google Scholar 

  49. G. Pólya and G. Szegő, Problems and Theorems in Analysis, Vol. 2, Springer Berlin, New York, 1972).

    Book  MATH  Google Scholar 

  50. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford Univ. Press Oxford, 2002).

    MATH  Google Scholar 

  51. E. B. Saff and T. Sheil-Small, Coefficient and integral mean estimates for algebraic and trigonometric polynomials with restricted zeros, J. London Math. Soc., 9 (1974), 16–22.

    Article  MathSciNet  MATH  Google Scholar 

  52. I. E. Simonov, Sharp Markov brothers type inequality in the spaces L p and L 1 on a closed interval, Trudy Inst. Mat. Mekh. URO RAN, 17:3 (2011), 282–290 (in Russian); translated in Proc. Steklov Inst. Math., 277 (suppl. 1) (2012), S161–S170.

    Google Scholar 

  53. I. E. Simonov, A sharp Markov brothers-type inequality in the spaces L8 and L1 on the segment, Math. Notes, 93:3–4 (2013), 607–615.

    Article  MathSciNet  MATH  Google Scholar 

  54. I. E. Simonov, Trigonometric polynomials with fixed leading coefficients that deviate least from zero in the integral norm, in: Contemporary Problems of Function Theory and Their Applications, Proceedings of XVIII International Saratov Winter School, Izdatel’stvo “Nauchnaya kniga” (Saratov, 2016), pp. 253–255.

    Google Scholar 

  55. I. E. Simonov and P. Yu. Glazyrina, Sharp Markov–Nikolskii inequality with respect to the uniform norm and the integral norm with Chebyshev weight, J. Approx. Theory, 192 (2015), 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  56. P. K. Suetin, Classical Orthogonal Polynomials, Fizmatlit (Moscow, 2005) (in Russian).

    MATH  Google Scholar 

  57. G. Szegő, Orthogonal polynomials, Amer. Math. Soc. (New York, 1959).

    MATH  Google Scholar 

  58. G. Szegő and A. Zygmund, On certain mean values of polynomials, J. Anal. Math., 3 (1953), 225–244.

    Article  MathSciNet  MATH  Google Scholar 

  59. L. V. Taikov, A generalization of an inequality of S. N. Bernstein, Trudy Mat. Inst. Steklov, 78 (1965), 43–47 (in Russian); translated in Proc. Steklov Inst. Math., 78 (1967), 43–48.

    MathSciNet  MATH  Google Scholar 

  60. L. V. Taikov, A group of extremal problems for trigonometric polynomials, Uspekhi Mat. Nauk, 20:3 (1965), 205–211 (in Russian).

    MathSciNet  MATH  Google Scholar 

  61. L. V. Taikov, On the best approximation of Dirichlet kernels, Math. Notes, 53:6 (1993), 640–643.

    Article  MathSciNet  MATH  Google Scholar 

  62. V. M. Tikhomirov, Some Questions of Approximation Theory, Izd.Mosk. Gos. Univ. Moscow, 1976) (in Russian).

    Google Scholar 

  63. A. F. Timan, Theory of Approximation of Functions of a Real Variable, Fizmatgiz Moscow, 1960) (in Russsian); translated Pergamon (New York, 1963).

    Google Scholar 

  64. G. N. Watson, A Treatise on the Theory of Bessel Functions. Part 1, Cambridge Univ. Press Cambridge, 1995).

    MATH  Google Scholar 

  65. A. Zygmund, Trigonometric Series, Vol. 2, Cambridge Univ. Press Cambridge, 1959).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deikalova.

Additional information

This work was supported by the Russian Foundation for Basic Research (project no. 15-01-02705) and by the Competitiveness Enhancement Program of the Ural Federal University (Enactment of the Government of the Russian Federation no. 211, agreement no. 02.A03.21.0006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arestov, V., Deikalova, M. Nikol’skii inequality between the uniform norm and L q -norm with jacobi weight of algebraic polynomials on an interval. Anal Math 42, 91–120 (2016). https://doi.org/10.1007/s10476-016-0201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-016-0201-2

Key words and phrases

Mathematics Subject Classification

Navigation