Skip to main content
Log in

Composition of Haar paraproducts: the random case

О композиции пара-произведений Хаара: случайная версия

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

When is the composition of paraproducts bounded? This is an important, and difficult question. We consider randomized variants of this question, finding nonclassical characterizations. For dyadic interval I, let h I = h 0 I be the L 2-normalized Haar function adapted to I, the superscript 0 denoting that it has integral zero. Set h 1 I = |h I |, the superscript 1 denoting a nonzero integral. A (classical dyadic) paraproduct with symbol b is one of the operators

. Here, ɛ, δ ∈ {0, 1}, with one of the two being zero and the other one. We characterize when certain randomized compositions B(b, B(β, ·)) are bounded operators on L 2(ℝ), permitting in particular both paraproducts to be unbounded.

qRезюме

При каких условиях композиция пара-произведений ограничена? Это важная и трудная задача. Мы изучаем рандомизированные варианты этой задачи, и устанавливаем неклассические характеризации. Для двоичного интервала I, пусть h I = h 0 I обозначает нормированную в L 2 функцию Хаара с носителем I, причем верхний индекс 0 употреблен чтобы подчеркнуть, что среднее значение зтой функции по определению нулевое. Положим h 1 I = |h I |, где верхний индекс 1 в зтот раз подчеркивает ненулевое среднее. Классическое (двоичное) nара-nроuзведенuе с сuмволом ь — зто один из операторов вида

. Здесь ɛ, δ ∈ {0, 1}, причем если одно из зтих двух чисел равно 0, то другое равно 1. В зтой работе мы находим условия, при которых рандомизированные композиции \( \mathbb{B} \)(b, \( \mathbb{B} \)(β, ·)) являются ограниченными операторами на L 2(ℝ), хотя каждое из пара-произведений в отдельности не обязано быть ограниченным.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sheldon, Sun-Yung A. Chang, and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory, 1(1978), 285–309.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ó. Blasco and S. Pott, Dyadic BMO on the bidisk, Rev. Mat. Iberoamericana, 21(2005), 483–510.

    MATH  MathSciNet  Google Scholar 

  3. F. L. Nazarov and S. R. Treĭl’, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz, 8(1996), 32–162 (in Russian); English translation St. Petersburg Math. J., 8(1997), 721–824.

    MATH  Google Scholar 

  4. F. L. Nazarov, S. R. Treĭl’, and A. Volberg, The Bellman functions and twoweight inequalities for Haar multipliers, J. Amer. Math. Soc., 12(1999), 909–928.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. L. Nazarov and A. Volberg, The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces K θ, J. Anal. Math., 87(2002), 385–414.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Pott and M. P. Smith, Paraproducts and Hankel operators of Schatten class via p-John-Nirenberg theorem, J. Funct. Anal., 217(2004), 38–78.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Stroethoff and Dechao Zheng, Invertible Toeplitz products, J. Funct. Anal., 195(2002), 48–70.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. T. Sawyer, Norm inequalities relating singular integrals and the maximal function, Studia Math., 75(1983), 253–263.

    MATH  MathSciNet  Google Scholar 

  9. E. T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math., 75(1982), 1–11.

    MATH  MathSciNet  Google Scholar 

  10. E. T. Sawyer, Two weight norm inequalities for certain maximal and integral operators, Proc. conf. of Harmonic analysis, (Minneapolis, Minn.), Lecture Notes in Math. 908, Springer (Berlin, 1982), 102–127.

    Article  MathSciNet  Google Scholar 

  11. K. Tachizawa, On weighted dyadic Carleson’s inequalities, J. Inequal. Appl., 6(2001), 415–433.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conference Series in Mathematics 100, Conference Board of the Mathematical Sciences (Washington, DC, 2003).

  13. A. L. Vol’berg and O. V. Ivanov, Membership of the product of two Hankel operators in the Schatten-von Neumann class, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 4(1987), 3–6.

    MathSciNet  Google Scholar 

  14. Dechao Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal., 138(1996), 477–501.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Bilyk.

Additional information

Research supported in part by a National Science Foundation DMS Grant #0801036 (1); by a National Science Foundation Grant (2); by a National Science Foundation DMS Grants #0456976 and # 0801154 (3); by a National Science Foundation DMS Grant # 0752703 and the Fields Institute (4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilyk, D., Lacey, M.T., Li, X. et al. Composition of Haar paraproducts: the random case. Anal Math 35, 1–13 (2009). https://doi.org/10.1007/s10476-009-0101-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-009-0101-9

Keywords

Navigation