Skip to main content
Log in

Atomic decompositions of martingale Hardy Lorentz amalgam spaces and applications

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We develop the martingale theory in the framework of Lorentz amalgam spaces. Atomic decompositions for the martingale Hardy Lorentz amalgam spaces are established. As applications of atomic decompositions, the dual spaces of the martingale Hardy Lorentz amalgam spaces are characterized. Furthermore, when the stochastic basis is regular, the boundedness of the fractional integrals on martingale Hardy Lorentz amalgam spaces is proved. The results obtained here generalized the corresponding known results in martingale Hardy amalgam spaces and various classical martingale Hardy spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. V. P. Ablé and J. Feuto, Atomic decomposition of Hardy–amalgam spaces, J. Math. Anal. Appl., 45 (2017), 1899–1936.

  2. Z. V. P. Ablé and J. Feuto, New characterizations of the dual spaces of Hardy–amalgam spaces, Acta Math. Sin. English Ser., 38 (2022), 519–546.

  3. A. Aldroubi and H. G. Feichtinger, Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline–like spaces: the \(L_p\) theory, Proc. Amer. Math. Soc., 126 (1998), 2677–2686.

  4. A. Aldroubi and K. Gröchenig, Beurling–Landau–type theorems for non–uniform sampling in shift invariant spaces, J. Fourier Anal. Appl., 6 (2000), 93–103.

  5. B. Arıs and S. Őztop, Wiener amalgam spaces with respect to Orlicz spaces on the affine group, J. Pseudo-Differ. Oper. Appl., 14 (2023), Article 23, 22 pp.

  6. J. Bansah and B. Sehba, Martingale Hardy-amalgam spaces: Atomic decompositions and duality, in: Operator Theory and Harmonic Analysis (OTHA 2020), Part I, New General Trends and Advances of the Theory, Springer (Cham, 2021), pp. 73–100.

  7. D. L. Burkholder, Martingale transforms, Ann. Math. Statist., 37 (1966), 1494–1504.

  8. D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math., 124 (1970), 249–304.

  9. C. Carton-Lebrun, H. P. Heinig and S. C. Hofmann, Integral operators on weighted amalgams, Studia Math., 109 (1994), 133-157.

  10. J.-A. Chao and H. Ombe, Commutators on dyadic martingales, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 35-38.

  11. J. Cunanan, M. Kobayashi and M. Sugimoto, Inclusion relations between \(L_p\)-Sobolev and Wiener amalgam spaces, J. Funct. Anal., 268 (2015), 239-254.

  12. J. L. Doob, Stochastic Processes, John Wiley (New York, 1953).

  13. H. G. Feichtinger, Banach spaces of distributions of Wiener's type and interpolation, in: Functional Analysis and Approximation (Oberwolfach, 1980), Internat. Ser. Number. Math., vol. 60, Birkha̋user (Basel, Boston, 1981), pp. 153-165.

  14. H. G. Feichtinger, Banach convolution algebras of Wiener type, in: Functions, Series, Operators, (Budapest, 1980), Colloq. Math. Soc. János Bolyai, vol. 35, North- Holland Publishing Co. (Amsterdam, 1983), pp. 509-524.

  15. H. G. Feichtinger and F. Weisz, Gabor analysis on Wiener amalgams, Sampl. Theory Signal Image Process., 6 (2007), 129-150.

  16. A. M. Garsia, Martingale Inequalities: Seminar Notes on Recent Progress, Math. Lecture Note Series, Benjamin Inc. (New York, 1973).

  17. L. Grafakos, Classical Fourier Analysis, 3rd Edition, Springer (New York, 2014).

  18. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkha̋user (Boston, 2001).

  19. W. Guo, H. Wu, Q. Yang and G. Zhao, Characterization of inclusion relations between Wiener amalgam and some classical spaces, J. Funct. Anal., 273 (2017), 404- 443.

  20. Z. Hao and Y. Jiao, Fractional integral on martingale Hardy spaces with variable exponents, Fract. Calc. Appl. Anal., 18 (2015), 1128-1145.

  21. Z. Hao and L. Li, Orlicz-Lorentz Hardy martingale spaces, J. Math. Anal. Appl., 482 (2020), 123520, 27 pp.

  22. Z. Hao and L. Li, Generalized grand Lorentz martingale spaces, Z. Anal. Anwend., 42 (2022), 323-346.

  23. Z. Hao, L. Li and A. Yang, Grand martingale Hardy spaces for \(0<p\leq1\), Ann. Funct. Anal., 13 (2022), No. 66, 26 pp.

  24. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z., 34 (1932), 403-439.

  25. C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc., 193 (1974), 199-215.

  26. K. P. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy- Lorentz-Karamata spaces, Q. J. Math., 65 (2014), 985-1009.

  27. K. P. Ho, Atomic decompositions of martingale Hardy-Morrey spaces, Acta Math. Hungar., 149 (2016), 177-189.

  28. K. P. Ho, Fractional integral operators on Orlicz slice Hardy spaces, Fract. Calc. Appl. Anal., 25 (2022), 1294-1305.

  29. F. Holland, Harmonic analysis on amalgams of \(L_p\) and \(l_q\), J. London Math. Soc. (2), 10 (1975), 295-305.

  30. D. Q. Huy and L. D. Ky, Boundedness of fractional integral operators on Musielak- Orlicz Hardy spaces, Math. Nachr., 294 (2021), 2340-2354.

  31. Y. Jiao, F. Weisz, L. Wu and D. Zhou, Variable martingale Hardy spaces and their applications in Fourier analysis, Dissertationes Math., 550 (2020), 1-67.

  32. Y. Jiao, F. Weisz, L. Wu and D. Zhou, Dual spaces for variable martingale Lorentz- Hardy spaces, Banach J. Math. Anal., 15 (2021), No. 53, 31 pp.

  33. Y. Jiao, L. Wu, A. Yang and R. Yi, The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, Trans. Amer. Math. Soc., 369 (2017), 537-553.

  34. Y. Jiao, T. Zhao and D. Zhou, Variable martingale Hardy-Morrey spaces,J. Math. Anal. Appl., 484 (2020), 123722, 26 pp.

  35. R. Long, Martingale Spaces and Inequalities, Peking University Press (Beijing, 1993).

  36. T. Miyamoto, E. Nakai and G. Sadasue, Martingale Orlicz-Hardy spaces, Math. Nachr., 285 (2012), 670-686.

  37. E. Nakai and G. Sadasue, Characterizations of boundedness for generalized fractional integrals on martingale Morrey spaces, Math. Inequal. Appl., 20 (2017), 929- 947.

  38. D. Peša, Wiener-Luxemburg amalgam spaces, J. Funct. Anal., 282 (2022), 109270, pp. 47.

  39. H. Rauhut, Wiener amalgam spaces with respect to quasi-Banach spaces, Colloq. Math., 109 (2007), 345-362.

  40. G. Sadasue, Fractional integrals on martingale Hardy spaces for \(0<p\leq1\), Mem. Osaka Kyoiku Univ. Ser. III, 60 (2011), 1-7.

  41. C. Watari, Multipliers for Walsh-Fourier series, Tohoku Math. J., 16 (1964), 239-251.

  42. F. Weisz, Martingale Hardy spaces for \(0<p\leq1\), Probab. Theory Related Fields, 84 (1990), 361-376.

  43. F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer (Berlin, 1994).

  44. N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z., 24 (1926), 575-616.

  45. G. Xie, Y. Jiao and D. Yang, Martingale Musielak-Orlicz Hardy spaces, Sci. China Math., 62 (2019), 1567-1584.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yang.

Additional information

Anming Yang is supported by the NSFC (No. 11801157) and Hunan Provincial Natural Science Foundation (No. 2020JJ5030).

Libo Li is supported by the NSFC (No. 12101223) and Hunan Provincial Natural Science Foundation (No. 2022JJ40146).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, Y. & Yang, A. Atomic decompositions of martingale Hardy Lorentz amalgam spaces and applications. Acta Math. Hungar. (2024). https://doi.org/10.1007/s10474-024-01422-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10474-024-01422-1

Keywords and phrases

Mathematics Subject Classification

Navigation