Skip to main content
Log in

Properties of complex-valued power means of random variables and their applications

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We consider power means of independent and identically distributed (i.i.d.) non-integrable random variables. The power mean is an example of a homogeneous quasi-arithmetic mean. Under certain conditions, several limit theorems hold for the power mean, similar to the case of the arithmetic mean of i.i.d. integrable random variables. Our feature is that the generators of the power means are allowed to be complex-valued, which enables us to consider the power mean of random variables supported on the whole set of real numbers. We establish integrabilities of the power mean of i.i.d. non-integrable random variables and a limit theorem for the variances of the power mean. We also consider the behavior of the power mean as the parameter of the power varies. The complex-valued power means are unbiased, strongly-consistent, robust estimators for the joint of the location and scale parameters of the Cauchy distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, Dover Publications Inc. (1965).

  2. J. Aczél, On mean values, Bull. Amer. Math. Soc., 54 (1948), 392–400.

  3. Y. Akaoka, Parameter estimation using complex valued moments for Cauchy distributions, Master’s thesis, Department of Mathematics, Shinshu University (2020).

  4. Y. Akaoka, K. Okamura, and Y. Otobe, Bahadur efficiency of the maximum likelihood estimator and one-step estimator for quasi-arithmetic means of the Cauchy distribution, Ann. Inst. Statist. Math., 74 (2022), 895–923.

  5. Y. Akaoka, K. Okamura, and Y. Otobe, Limit theorems for quasi-arithmetic means of random variables with applications to point estimations for the Cauchy distribution, Brazil. J. Probab. Stat., 36 (2022), 385–407.

  6. Y. Akaoka, K. Okamura, and Y. Otobe, Confidence disc and square for Cauchy distributions, Ukrain. Math. J., 75 (2023), 305–318.

  7. S. Ali, M. Khan, and J. Shabbir, Using extreme values and fractional raw moments for mean estimation in stratified random sampling, Hacet. J. Math. Stat., 47 (2018), 383–402.

  8. R. Askey, Orthogonal Polynomials and Special Functions, CBMS-NSF Regional Conference Series in Appl. Mathematics, SIAM (1975).

  9. M. Barczy and P. Burai, Limit theorems for Bajraktarević and Cauchy quotient means of independent identically distributed random variables, Aequationes Math., 96 (2022), 279–305.

  10. B. Bercu, On the elephant random walk with stops playing hide and seek with the Mittag-Leffler distribution, J. Stat. Phys., 189 (2022), Paper No. 12, 27 pp.

  11. R. L. Berger and G. Casella, Deriving generalized means as least squares and maximum likelihood estimates, Amer. Statist., 46 (1992), 279–282.

  12. A. Bhattacharya and R. Bhattacharya, Nonparametric Inference on Manifolds, Institute of Mathematical Statistics (IMS) Monographs, vol. 2, Cambridge University Press (Cambridge, 2012).

  13. R. N. Bhattacharya and J. K. Ghosh, On the validity of the formal Edgeworth expansion, Ann. Statist., 6 (1978), 434–451.

  14. R. Bhattacharya and V. Patrangenaru, Nonparametic estimation of location and dispersion on Riemannian manifolds, J. Stat. Plan. Inference, 108 (2002), 23–35.

  15. R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds. I, Ann. Statist., 31 (2003), 1–29.

  16. R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds. II., Ann. Statist., 33 (2005), 1225–1259.

  17. R. N. Boyarinov, V. N. Chubarikov, and I. S. Ngongo, Asymptotic formulas for fractional moments of special sums, Chebyshevskiĭ Sb., 4 (2003), 173–183.

  18. P. S. Bullen, Handbook of Means and their Inequalities, Mathematics and its Applications, Kluwer Academic Publishers Group (2003).

  19. T. Burić, N. Elezović, and L. Mihoković, Expectations of large data means, J. Math. Inequal., 17 (2023), 403–418.

  20. G. Casella and R. L. Berger, Statistical Inference, The Wadsworth & Brooks/Cole Statistics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software (Pacific Grove, CA, 1990).

  21. M. de Carvalho, Mean, what do you mean?, Amer. Statist., 70 (2016), 270–274.

  22. B. de Finetti, Sul concetto di media, Gionale dell’Instituto Italiano degli Attuarii, 2 (1931), 369–396.

  23. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Stochastic Modelling and Appl. Probability, vol. 38, Springer-Verlag (Berlin, 2010).

  24. Den Hollander, Large Deviations, American Mathematical Society (Providence, RI, 2000).

  25. Rick Durrett, Probability. Theory and Examples, 5th ed., vol. 49, Cambridge University Press (Cambridge, 2019).

  26. W. Feller, An Introduction to Probability Theory and its Applications, II, John Wiley and Sons (1966).

  27. S. G. From and K. M. Lal Saxena, Estimating parameters from mixed samples using sample fractional moments, J. Stat. Plan. Inference, 21 (1989), 231–244.

  28. T. Fukunaga andM. Takahashi, On convexity of simple closed frontals, Kodai Math. J., 39 (2016), 389–398.

  29. H. Gzyl and A. Tagliani, Hausdorff moment problem and fractional moments, Appl. Math. Comput., 216 (2010), 3319–3328.

  30. H. Gzyl and A. Tagliani, Stieltjes moment problem and fractional moments, Appl. Math. Comput., 216 (2010), 3307–3318.

  31. H. Gzyl, P. L. Novi Inverardi, A. Tagliani, and M. Villasana, Maxentropic solution of fractional moment problems, Appl. Math. Comput., 173 (2006), 109–125.

  32. M. Henmi and H. Matsuzoe, Geometry of pre-contrast functions and non-conservative estimating functions, in: International Workshop on Complex Structures, Integrability and Vector Fields, AIP Conf. Proc., vol. 1340, Amer. Inst. Phys. (Melville, NY, 2011), pp. 32–41.

  33. P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd revised ed., Wiley Series in Probability and Statistics, John Wiley & Sons (Hoboken, NJ, 2009).

  34. M. Itoh and H. Satoh, Geometry of Fisher information metric and the Barycenter map, Entropy, 17 (2015), 1814–1849.

  35. M. Itoh and H. Satoh, Information geometry of the space of probability measures and barycenter maps, Sugaku Expositions, 34 (2021), 231–253.

  36. N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions, 2nd ed., vol. 1, John Wiley and Sons (1994).

  37. Z. I. Kalantan and J. Einbeck, Quantile-based estimation of the finite Cauchy mixture model, Symmetry, 11 (2019), 1186.

  38. H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), 509–541.

  39. D. G. Kendall, D. Barden, T. K. Carne, and H. Le, Shape and Shape Theory, Wiley Series in Probability and Statistics, John Wiley & Sons (Chichester, 1999).

  40. W. S. Kendall, Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence, Proc. London. Math. Soc. (3), 61 (1990), 371–406.

  41. W. S. Kendall and H. Le, Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables, Brazil. J. Probab. Stat., 25 (2011), 323–352.

  42. A. Khalique, Estimation by fractional moments, in: Developments in Statistics and its Applications (Riyadh, 1983), King Saud Univ. Lib. (Riyadh, 1984), pp. 553– 562.

  43. M. Khan, J. Shabbir, Z. Hussain, and B. Al-Zahrani, A class of estimators for finite population mean in double sampling under nonresponse using fractional raw moments, J. Appl. Math., (2014), Art. ID 282065, 11 pp.

  44. K. Kobayashi and H. P. Wynn, Empirical geodesic graphs and CAT(k) metrics for data analysis, Stat. Comput., 30 (2020), 1–18.

  45. A. N. Kolmogorov, Sur la notion de la moyenne, Atti R. Accad. Naz. Lincei, 12 (1930), 388–391.

  46. T. J. Kozubowski, Fractional moment estimation of Linnik and Mittag-Leffler parameters, Math. Comput. Modelling, 34 (2001), no. 9-11, 1023–1035.

  47. H. Le, On the consistency of procrustean mean shapes, Adv. Appl. Probab., 30 (1998), 53–63.

  48. H. Le, Locating Fréchet means with application to shape spaces, Adv. Appl. Probab., 33 (2001), 324–338.

  49. E. L. Lehmann, Elements of Large-Sample Theory, Springer-Verlag (1999).

  50. E. L. Lehmann and J. P. Shaffer, Inverted distributions, Amer. Statist., 42 (1988), 191–194.

  51. G. Letac, Which functions preserve Cauchy laws?, Proc. Amer. Math. Soc., 67 (1978), 277–286.

  52. G. D. Lin, Characterizations of distributions via moments, Sankhyā Ser. A, 54 (1992), 128–132.

  53. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge University Press (1952).

  54. R. A. Maronna, R. Douglas Martin, V. J. Yohai, and M. Salibián-Barrera, Robust Statistics, Wiley Series in Probability and Statistics, JohnWiley & Sons (Hoboken, NJ, 2019).

  55. A. M. Mathai, On fractional moments of quadratic expressions in normal variables, Comm. Statist. Theory Methods, 20 (1991), 3159–3174.

  56. M. Matsui and Z. Pawlas, Fractional absolute moments of heavy tailed distributions, Brazil. J. Probab. Stat., 30 (2016), 272–298.

  57. P. McCullagh, Möbius transformation and Cauchy parameter estimation, Ann. Statist., 24 (1996), 787–808.

  58. S. P. Mukherjee and B. C. Sasmal, Estimation of Weibull parameters using fractional moments, Calcutta Statist. Assoc. Bull., 33 (1984), 179–186.

  59. S. Mukhopadhyay, A. J. Das, A. Basu, A. Chatterjee, and S. Bhattacharya, Does the generalized mean have the potential to control outliers?, Comm. Statist. Theory Methods, 50 (2021), 1709–1727.

  60. M. Nagumo, Über eine Klasse der Mittelwerte, Japan. J. Math., 7 (1930), 71–79.

  61. F. Nielsen, On Voronoi diagrams on the information-geometric Cauchy manifolds, Entropy, 22 (2020), Paper No. 713, 34 pp.

  62. P. L. Novi Inverardi and A. Tagliani, Maximum entropy density estimation from fractional moments, Comm. Statist. Theory Methods, 32 (2003), 327–345.

  63. Pier. L. Novi Inverardi, A. Petri, G. Pontuale, and A. Tagliani, Stieltjes moment problem via fractional moments, Appl. Math. Comput., 166 (2005), 664–677.

  64. P. L. Novi Inverardi, G. Pontuale, A. Petri, and A. Tagliani, Hausdorff moment problem via fractional moments, Appl. Math. Comput., 144 (2003), 61–74.

  65. K. Okamura, Characterizations of the Cauchy distribution associated with integral transforms, Studia Sci. Math. Hungar., 57 (2020), 385–396.

  66. K. Okamura and Y. Otobe, Characterizations of the maximum likelihood estimator of the Cauchy distribution, Lobachevskii J. Math., 43 (2022), 2576–2590.

  67. A. G. Pakes, On the convergence of moments of geometric and harmonic means, Statist. Neerlandica, 53 (1999), 96–110.

  68. P. R. Rider, The method of moments applied to a mixture of two exponential distributions, Ann. Math. Statist., 32 (1961), 143–147.

  69. C. Schötz, Strong Laws of Large Numbers for Generalizations of Fréchet Mean Sets, Statistics, 56 (2022), 34–52.

  70. A. Tagliani, On the proximity of distributions in terms of coinciding fractional moments, Appl. Math. Comput., 145 (2003), no. 2-3, 501–509.

  71. G. M. Tallis and R. Light, The use of fractional moments for estimating the parameters of a mixed exponential distribution, Technometrics, 10 (1968), 161–175.

  72. E. Taufer, S. Bose, and A. Tagliani, Optimal predictive densities and fractional moments, Appl. Stoch. Models Bus. Ind., 25 (2009), 57–71.

  73. A. W. van der Vaart, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press (1998).

  74. J. Xu and C. Dang, A novel fractional moments-based maximum entropy method for high-dimensional reliability analysis, Appl. Math. Model., 75 (2019), 749–768.

  75. X. Zhang, W. He, Y. Zhang, and M. D. Pandey, An effective approach for probabilistic lifetime modelling based on the principle of maximum entropy with fractional moments, Appl. Math. Model., 51 (2017), 626–642.

  76. H. Ziezold, On expected figures and a strong law of large numbers for random elements in quasi-metric spaces, in: Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974), Vol. A, D. Reidel Publishing Co. (Dordrecht–Boston, Mass., 1977), pp. 591–602.

  77. H. Ziezold, On expected figures in the plane, in: Geobild ’89 (Georgenthal, 1989), Math. Res., vol. 51, Akademie-Verlag (Berlin, 1989), pp. 105–110.

  78. H. Ziezold, Mean figures and mean shapes applied to biological figure and shape distributions in the plane, Biometrical J., 36 (1994), 491–510.

Download references

Acknowledgement

We wish to express our gratitude to an anonymous referee for his or her comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Okamura.

Additional information

A part of this paper consists of Y. A.’s master’s thesis [3].

The second author was supported by JSPS KAKENHI 19K14549 and 22K13928.

The third author was supported by JSPS KAKENHI 16K05196 and 23K03213.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akaoka, Y., Okamura, K. & Otobe, Y. Properties of complex-valued power means of random variables and their applications. Acta Math. Hungar. 171, 124–175 (2023). https://doi.org/10.1007/s10474-023-01372-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-023-01372-0

Key words and phrases

Mathematics Subject Classification

Navigation