Skip to main content
Log in

On the index of the octic number field defined by \(x^8+ax+b\)

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let K be an octic number field generated by a complex root \(\theta\) of a monic irreducible trinomial \(F(x)= x^{8}+ax+b \in \mathbb{Z}[x]\), where a and b are two non-zero rational integers. Let \(i(K)\) be the index of K. We show that i(K) is either 1 or a power of 2. Further, assuming that \((a,b) \notin (32+64\mathbb{Z})\times {(16+64\mathbb{Z}) } \) and \((a,b) \notin (64\mathbb{Z})\times(112+128\mathbb{Z})\), we give necessary and sufficient conditions depending only on a and b so that 2 is a prime common index divisor of K. In particular, we provide sufficient conditions for which K is non-monogenic. In such a way our results extend a result proved in [5], when some sufficient conditions of the divisibility of i(K) by 2 are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ahmad, T, Nakahara and S. M. Husnine, Power integral bases for certain pure sextic fields, Int. J. Number Theory, 10 (2014), 2257–2265.

  2. S. Ahmad, T. Nakahara and A. Hameed, On certain pure sextic fields related to a problem of Hasse, Int. J. Algebra Comput., 26 (2016), 577–583.

  3. S. Alaca and K. S. Williams, Introduction to Algebraic Number Theory, Cambridge University Press (New York, 2004).

  4. H. Ben Yakkou, On common index divisors and non-monogenity of number fields defined by \(x^{5} + {ax}^{3} + b\), arXiv:2212.05029 (2022).

  5. H. Ben Yakkou, On monogenity of certain number fields defined by trinomial of type \(x^{8} + {ax}^{3} + b\), Acta. Math. Hungar., 166 (2022), 614–623.

  6. H. Ben Yakkou, On non-monogenic number fields defined by trinomial of type \(x^{n} + {ax}^{m} + b\), arXiv:2203.07625 (2022).

  7. H. Ben Yakkou and L. El Fadil, On monogenity of certain number fields defined by trinomials, Funct. Approx. Comment. Math., 67 199–221.

  8. Y. Bilu, I. Gaál and K. Győry, Index form equations in sextic fields: a hard computation, Acta Arith., 115 (2004), 85–96.

  9. H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer- Verlag (Berlin, Heidelberg, 1993).

  10. C. T. Davis and B. K. Spearman, The index of quartic field defined by a trinomial \(x^{4} + {ax} + b\), J. Algebra Appl., 17 (2018), 1850197, 18 pp.

  11. R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abhandlungen, 23 (1878), 1–23.

  12. L. El Fadil and O. Kchit, On index divisors and monogenity of certain septic number fields defined by \(x^{7} + {ax}^{3} + b\), Comm. Algebra, 51 (2022), 1-15.

  13. L. El Fadil, J. Montes and E. Nart, Newton polygons and p-integral bases of quartic number fields J. Algebra Appl., 11 (2012), 1250073, 33 pp.

  14. H. T. Engstrom, On the common index divisors of an algebraic number field, Trans. Amer. Math. Soc, 32 (1930), 223–237.

  15. J. H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, Cambridge Univ. Press (2017).

  16. I. Gaál, An experiment on the monogenity of a family of trinomials, JP J. Algebra Num. Theory Appl., 51 (2021), 97–111.

  17. I. Gaál, Diophantine Equations and Power Integral Bases, Theory and Algorithm, 2nd ed., Birkh¨auser (Boston, 2019).

  18. I. Gaál and K. Győry, Index form equations in quintic fields, Acta Arith., 89 (1999), 379–396.

  19. I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in quartic number fields, J. Symbolic Comput., 16 (1993), 563–584.

  20. I. Gaál and L. Remete, Non-monogenity in a family of octic fields, Rocky Mountain J. Math., 47 (2017), 817–824.

  21. I. Gaál and L. Remete, Integral bases and monogenity of pure fields, J. Number Theory, 173 (2017), 129–146.

  22. J. Guàrdia, J. Montes and E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, textitJ. Th´eor. Nombres Bordeaux, 23 (2021), 667–669.

  23. J. Guàrdia, J. Montes and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer.Math. Soc., 364 (2012), 361–416.

  24. K. Győry, Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains, Acta Math. Hungar., 42 (1983), 45–80.

  25. K. Győry, On discriminants and indices of integers of an algebraic number field, J.Reine Angew. Math., 324 (1981), 114–126.

  26. K. Győry, On polynomials with integer coefficients and given discriminant, IV, Publ. Math. Debrecen, 25 (1978), 155–167.

  27. K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith., 23 (1973), 419–426.

  28. K. Győry, Sur les polynômes à coefficients entiers et de discriminant donne III, Publ. Math. Debrecen, 23 (1976), 141–165.

  29. A. Jakhar, S. Kaur and S. Kumar, Common index divisor of the number field defined by \(x^{5} + {ax} + b\), Proc. Edinburgh Math. Soc., 65 (2021), 1147–1161.

  30. A. Jakhar, S. K. Khanduja and N. Sangwan, Characterization of primes dividing the index of a trinomial, Int. J. Number Theory, 13 (2017), 2505–2514.

  31. L. Jones and T. Phillips, Infinite families of monogenic trinomials and their Galois groups, Int. J. Math., 29 (2018). Article ID 1850039, 11 pp.

  32. L. Jones and D. White, Monogenic trinomials with non-squarefree discriminant, Int.J. Math., 32 (2021).

  33. J. Montes and E. Nart, On theorem of Ore, J. Algebra, 146 (1992), 318–334.

  34. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer Monographs in Mathematics, Springer-Verlag (Berlin, 2004).

  35. Ø. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann., 99 (1928), 84–117.

  36. A. Pethő and M. Pohst, On the indices of multiquadratic number fields, Acta Arith., 153 (2012), 393–414.

  37. A. Pethő and V. Ziegler, On biquadratic fields that admit unit power integral basis, Acta Math. Hungar., 133 (2011), 221–241.

  38. J. Ś liwa, On the nonessential discriminant divisor of an algebraic number field, Acta. Arith., 42 (1982), 57–72.

  39. E. Ż yliński, Zur Theorie der außerwesentlichen diskriminantenteiler algebraischer körper, Math. Ann., 73 (1913), 273–274.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ben Yakkou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Yakkou, H., Boudine, B. On the index of the octic number field defined by \(x^8+ax+b\). Acta Math. Hungar. 170, 585–607 (2023). https://doi.org/10.1007/s10474-023-01353-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-023-01353-3

Key words and phrases

Mathematics Subject Classification

Navigation