Skip to main content
Log in

Fractional series operators on discrete Hardy spaces

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For \(0 \leq \gamma < 1\) and a sequence \(b=\{ b(i) \}_{i \in \mathbb{Z}}\) we consider the fractional operator \(T_{\alpha, \beta}\) defined formally by

$$(T_{\alpha, \beta} \, b)(j) = \sum_{i \neq \pm j} \frac{b(i)}{|i-j|^{\alpha} |i+j|^{\beta}} \quad (j \in \mathbb{Z}),$$

where \(\alpha, \beta > 0\) and \(\alpha + \beta = 1 - \gamma\). The main aim of this note is to prove that the operator \(T_{\alpha, \beta}\) is bounded from \(H^{p}(\mathbb{Z})\) into \(\ell^{q}(\mathbb{Z})\) for \(0 < p < \frac{1}{\gamma}\) and \(\frac{1}{q} = \frac{1}{p} - \gamma\). For \(\alpha = \beta = \frac{1-\gamma}{2}\) we show that there exists \(\epsilon \in (0, \frac 13 )\) such that for every \({0 \leq \gamma < \epsilon}\) the operator \(T_{\frac{1-\gamma}{2}, \frac{1-\gamma}{2}}\) is not bounded from \(H^{p}(\mathbb{Z})\) into \(H^{q}(\mathbb{Z})\) for \(0 < p \leq \frac{1}{1 + \gamma}\) and \(\frac{1}{q} = \frac{1}{p} - \gamma\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Boza and M. Carro, Discrete Hardy spaces, Studia Math., 129 (1998), 31–50.

  2. D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Mathematics, vol. 1966, Springer-Verlag (Berlin, Heidelberg, 2009).

  3. C. Eoff, The discrete nature of the Paley–Wiener spaces, Proc. Amer. Math. Soc., 123 (1995), 505–512.

  4. L. Grafakos, Classical Fourier Analysis, third edition, Graduate Texts in Mathematics, vol. 249, Springer (New York, 2014).

  5. G. H. Hardy, Notes on some points in the integral calculus. LI (On Hilbert’s double-series theorem, and some connected theorems concerning the convergence of infinite series and integrals), Messenger Math., 48 (1918), 107–112.

  6. G. H. Hardy, J. E. Littlewood and G. Pólya, The maximum of a certain bilinear form, Proc. London Math. Soc., 5 (1926), 265–282.

  7. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z., 27 (1928), 565–606.

  8. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press (London, New York, 1952).

  9. Kwok-Pun Ho, Discrete Hardy's inequalities with \(0 < p \leq 1\), J. King Saud Univ. Sci., 30 (2018), 489–492.

  10. Y. Kanjin and M. Satake, Inequalities for discrete Hardy spaces, Acta Math. Hungar., 89 (2000), 301–313.

  11. Y. Komori, The atomic decomposition of molecule on discrete Hardy spaces, Acta Math. Hungar., 95 (2002), 21–27.

  12. E. Liflyand, Harmonic Analysis on the Real Line. A Path in the Theory, Pathways in Mathematics, Birkhäuser (2021).

  13. F. Ricci and P. Sjögren, Two-parameter maximal functions in the Heisenberg group, Math. Z., 199 (1998), 565–575.

  14. M. Riesz, Sur les fonctions conjuguées, Math. Z., 27 (1928), 218–244.

  15. P. Rocha and M. Urciuolo, On the \(H^{p}-L^{p}\) boundedness of some integral operators, Georgian Math. J., 18 (2011), 801–808.

  16. P. Rocha and M. Urciuolo, On the \(H^{p}-L^{q}\) boundedness of some fractional integral operators, Czech. Math. J., 62 (2012), 625–635.

  17. P. Rocha and M. Urciuolo, Fractional type integral operators on variable Hardy spaces, Acta Math. Hungar., 143 (2014), 502–514.

  18. I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. für Math., 140 (1912), 1–28.

  19. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (Princeton, NJ, 1993).

  20. E. C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Z., 25 (1926), 321-347; Correction: Math. Z., 26 (1927), 496.

  21. F. Wiener, Elementarer Beweis eines Reihensatzes von Herrn Hilbert, Math. Ann., 68 (1910), 361–366.

  22. H. Weyl, Singuläre Integralgleichungen mit besonderer Berücksicktung des Fourierschen Integraltheorems, Ph.D. dissertation (Göttingen, 1908).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rocha.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, P. Fractional series operators on discrete Hardy spaces. Acta Math. Hungar. 168, 202–216 (2022). https://doi.org/10.1007/s10474-022-01260-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-022-01260-z

Key words and phrases

Mathematics Subject Classification

Navigation