Skip to main content

COUNTEREXAMPLES TO THE COLORFUL TVERBERG CONJECTURE FOR HYPERPLANES

Abstract

Karasev [16] conjectured that for every set of r blue lines, r green lines, and r red lines in the plane, there exists a partition of them into r colorful triples whose induced triangles intersect. We disprove this conjecture for every r and extend the counterexamples to higher dimensions.

This is a preview of subscription content, access via your institution.

References

  1. A. Akopyan, S. Avvakumov and R. Karasev, Convex fair partitions into an arbitrary number of pieces, arXiv, fmath.MG (2018), 12 pp

  2. S. Avvakumov and R. Karasev, Envy-free division using mapping degree, Mathematika,67 (2021), 36–53.

  3. S. Avvakumov, R. Karasev and A. Skopenkov, Stronger counterexamples to the topological Tverberg conjecture, arXiv:1908.08731, (2019).

  4. I. Bárány and D. G. Larman, A colored version of Tverberg’s theorem, J. London Math. Soc., 45 (1992), 314–320.

  5. I. Bárány and J. Pach, Homogeneous selections from hyperplanes, J. Combin. Theory Ser. B, 104 (2014), 81–87.

  6. I. Bárány, S. B. Shlosman and A. Szϋcs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc., 2 (1981), 158–164.

  7. I. Bárány and P. Soberón, Tverberg’s theorem is 50 years old: A survey, Bull. Amer.Math. Soc., 55 (2018), 459–492.

  8. P. V. M. Blagojević, F. Frick and G. M. Ziegler, Tverberg plus constraints, Bull.London Math. Soc., 46 (2014), 953–967.

  9. P. V. M. Blagojević, B. Matschke and G. M. Ziegler, Optimal bounds for a colorful Tverberg-Vrećica type problem, Adv. in Math., 226 (2011), 5198–5215.

  10. P. V. M. Blagojević, B. Matschke and G. M. Ziegler, Optimal bounds for the colored Tverberg problem, J. European Math. Soc., 17 (2015), 739–754.

  11. P. V. M. Blagojević and G. M. Ziegler, Beyond the Borsuk–Ulam theorem: the topological Tverberg story, in: A Journey Through Discrete Mathematics, Springer (Cham, 2017). 273–341,

  12. P. V. M. Blagojević and G. M. Ziegler, Convex equipartitions via equivariant obstruction theory, Israel J. Math., 200 (2014), 49–77.

  13. F. Frick, Counterexamples to the topological Tverberg conjecture, Oberwolfach Reports,12 (2015), 318–312.

  14. F. Frick and P. Soberón, The topological Tverberg problem beyond prime powers,arXiv, math.CO (2020).

  15. C. Huemer, P. Pérez-Lantero, C. Seara and R. I. Silveira, Matching points with disks with a common intersection, Discrete Math., 342 (2019), 1885–1893

  16. R. N. Karasev, Dual theorems on central points and their generalizations, Sbornik:Math., 199 (2008), 1459–1479.

  17. R. N. Karasev, Tverberg-Type Theorems for intersecting by rays, Discrete & Comput.Geom., 45 (2011), 340–347.

  18. R. N. Karasev, A. Hubard and B. Aronov, Convex equipartitions: the spicy chicken theorem, Geom. Dedicata, 170 (2014), 263–279.

  19. S. Lee and K. Yoo, On a conjecture of Karasev, Comput. Geom., 75 (2018), 1–10.

  20. J. A. D. Loera, X. Goaoc, F. Meunier and N. H. Mustafa, The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer.Math. Soc., 56 (2019), 1–97.

  21. I. Mabillard and U. Wagner, Eliminating Tverberg points. I. An analogue of the Whitney trick, in: Proc. 30th Annual Symp. Comput. Geom. (SOCG), ACM (Kyoto,2014), pp. 171–180.

  22. J. Matoušek, Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry, Springer (Berlin, Heidelberg, 2003).

  23. F. Meunier and S. Zerbib, Envy-free cake division without assuming the players prefer nonempty pieces, Israel J. Math., 234 (2019), 907–925.

  24. M. Özaydin, Equivariant maps for the symmetric group (1987), unpublished preprint, https://minds.wisconsin.edu/bitstream/handle/1793/63829/Ozaydin.pdf.

  25. P. J. Rousseeuw and M. Hubert, Depth in an arrangement of hyperplanes, Discrete Comput. Geom., 22 (1999), 167–176.

  26. P. Soberón, Balanced convex partitions of measures in Rd, Mathematika, 58 (2012),71–76.

  27. P. Soberón and Y. Tang, Tverberg’s theorem, disks, and Hamiltonian cycles, arXiv:2011.12218 (2020).

  28. H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc., 41 (1966),123–128.

  29. A. Y. Volovikov, On a topological generalization of the Tverberg theorem, Math.Notes, 59 (1996), 324–326.

  30. R. T. Živaljević and S. T. Vrećica, The colored Tverberg’s problem and complexes of injective functions, J. Combin. Theory, Series A, 61 (1992), 309–318.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. SOBERÓN.

Additional information

This project was done as part of the 2021 New York Discrete Math REU, funded by NSF grant DMS 2051026.

Carvalho's research was supported by the KINSC Summer Scholar program by Haverford College.

Soberón's research is supported by NSF grant DMS 2054419 and a PSC-CUNY TRADB52 award.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

CARVALHO, J.P., SOBERÓN, P. COUNTEREXAMPLES TO THE COLORFUL TVERBERG CONJECTURE FOR HYPERPLANES. Acta Math. Hungar. 167, 385–392 (2022). https://doi.org/10.1007/s10474-022-01249-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-022-01249-8

Key words and phrases

  • Tverberg's theorem
  • hyperplane arrangement
  • combinatorial geometry

Mathematics Subject Classification

  • 52A37
  • 52C35