Skip to main content
Log in

Generalized fractional integral operators on variable exponent Morrey spaces of an integral form

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We establish the boundedness of generalized fractional integral operators \(I_{\rho}\) on variable exponent Morrey spaces of an integral form \(\mathcal{L}^{p(\cdot),\omega}(G)\), where \(\rho(x,r)\) and \(\omega(x,r)\)are general functions satisfying certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.

    Article  MathSciNet  Google Scholar 

  2. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer (1996).

  3. A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15 (2008), 195–208.

    Article  MathSciNet  Google Scholar 

  4. C. Capone, D. Cruz-Uribe and A. Fiorenza, The fractional maximal operator and fractional integrals on variable \(L^p\) spaces, Rev. Mat. Iberoam., 23 (2007), 743–770.

  5. F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 7 (1987), 273–279.

    MathSciNet  MATH  Google Scholar 

  6. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhauser/Springer (Heidelberg, 2013).

    Book  Google Scholar 

  7. L. Diening, Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p(\cdot )}\) and \(W^{k, p(\cdot )}\), Math. Nachr., 263 (2004), 31–43.

  8. L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer (Heidelberg, 2011).

  9. Eridani, H. Gunawan and E. Nakai, On generalized fractional integral operators, Sci. Math. Jpn., 60 (2004), 539–550.

  10. T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potential space of variable exponent, Math. Nachr., 279 (2006), 1463–1473.

    Article  MathSciNet  Google Scholar 

  11. H. Gunawan, A note on the generalized fractional integral operators, J. Indones. Math. Soc., 9 (2003), 39–43.

    MathSciNet  MATH  Google Scholar 

  12. V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107 (2010), 285–304.

    Article  MathSciNet  Google Scholar 

  13. V. S. Guliyev, J. Hasanov and S. Samko, Boundedness of the maximal, potential and Singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci., 170 (2010), 423–443.

    Article  MathSciNet  Google Scholar 

  14. D. Hashimoto, Y. Sawano and T. Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces, Colloq. Math., 161 (2020), 51–66.

    Article  MathSciNet  Google Scholar 

  15. L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc., 36 (1972), 505–510.

    Article  MathSciNet  Google Scholar 

  16. V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral Operators in Non-standard Function Spaces. 1. Variable Exponent Lebesgue and Amalgam Spaces, Operator Theory: Advances and Applications, vol. 248, Birkhäuser/Springer (2016).

  17. V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, Integral Operators in Non-standard Function Spaces. 2. Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Operator Theory: Advances and Applications, vol. 249, Birkhäuser/Springer (2016).

  18. F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137 (2013), 76–96.

    Article  MathSciNet  Google Scholar 

  19. Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces \(L^{1,\nu,\beta }(G)\), Hiroshima Math. J., 38 (2008), 425–436.

  20. Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ., 56, (2011), 671–695.

    Article  MathSciNet  Google Scholar 

  21. Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Maximal functions, Riesz potentials and Sobolev embeddings on Musielak–Orlicz-Morrey spaces of variable exponent in Rn, Rev. Mat. Complut., 25 (2012), 413–434.

  22. Y. Mizuta, E. Nakai, Y. Sawano and T. Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Orlicz-Musielak spaces, Arch. Math., 98 (2012), 253–263.

    Article  Google Scholar 

  23. Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan, 60 (2008), 583–602.

    Article  MathSciNet  Google Scholar 

  24. Y. Mizuta and T. Shimomura, Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, Math. Inequal. Appl., 13 (2010), 99–122.

    MathSciNet  MATH  Google Scholar 

  25. Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J., 61 (2009), 225–240.

    Article  MathSciNet  Google Scholar 

  26. Y. Mizuta and T. Shimomura, Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form, Math. Nachr., 283 (2010), 1336–1352.

    Article  MathSciNet  Google Scholar 

  27. C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166.

    Article  MathSciNet  Google Scholar 

  28. E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 95–103.

    Article  MathSciNet  Google Scholar 

  29. E. Nakai, On generalized fractional integrals, Taiwanese J. Math., 5 (2001), 587–602.

    Article  MathSciNet  Google Scholar 

  30. T. Ohno and T. Shimomura, Sobolev-type inequalities on variable exponent Morrey spaces of an integral form, Ric. Mat. (to appear).

  31. J. Peetre, On the theory of \(L_{p,\lambda }\) spaces, J. Funct. Anal., 4 (1969), 71–87.

  32. H. Rafeiro and S. Samko, On a class of sublinear operators in variable exponent Morrey-type spaces, Complex Var. Elliptic Equ., 67 (2021), 683–700.

    Article  MathSciNet  Google Scholar 

  33. N. Samko, S. Samko and B. Vakulov, Weighted Sobolev theorem in Lebesgue spaces with variable exponent, J. Math. Anal. Appl., 335 (2007), 560–583.

    Article  MathSciNet  Google Scholar 

  34. Y. Sawano, S. Sugano and H. Tanaka, Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc., 363 (2011), 6481–6503.

    Article  MathSciNet  Google Scholar 

  35. J. Serrin, A remark on Morrey potential, Contemp. Math., 426 (2007), 307–315.

    Article  MathSciNet  Google Scholar 

  36. I. Sihwaningrum, H. Gunawan and E. Nakai, Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces, Math. Nachr., 291 (2018), 1400–1417.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ohno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohno, T., Shimomura, T. Generalized fractional integral operators on variable exponent Morrey spaces of an integral form. Acta Math. Hungar. 167, 201–214 (2022). https://doi.org/10.1007/s10474-022-01245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-022-01245-y

Key words and phrases

Mathematics Subject Classification

Navigation