Skip to main content
Log in

Non-crossing monotone paths and binary trees in edge-ordered complete geometric graphs

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

An edge-ordered graph is a graph with a total ordering of its edges. A path \(P=v_1v_2\ldots v_k\) in an edge-ordered graph is called increasing if \((v_iv_{i+1}) < (v_{i+1}v_{i+2})\) for all \(i = 1,\ldots,k-2\); and it is called decreasing if \((v_iv_{i+1}) > (v_{i+1}v_{i+2})\) for all \(i = 1,\ldots,k-2\). We say that P is monotone if it is increasing or decreasing. A rooted tree T in an edge-ordered graph is called monotone if either every path from the root to a leaf is increasing or every path from the root to a leaf is decreasing.

Let G be a graph. In a straight-line drawing D of G, its vertices are drawn as different points in the plane and its edges are straight line segments. Let \(\overline{\alpha}(G)\) be the largest integer such that every edge-ordered straight-line drawing of G contains a monotone non-crossing path of length \(\overline{\alpha}(G)\). Let \(\overline{\tau}(G)\) be the largest integer such that every edge-ordered straight-line drawing of G contains a monotone non-crossing complete binary tree of \(\overline{\tau}(G)\) edges. In this paper we show that \(\overline \alpha(K_n) = \Omega(\log\log n)\), \(\overline \alpha(K_n) = O(\log n), \overline \tau(K_n) = \Omega(\log\log \log n)\) and \(\overline \tau(K_n) = O(\sqrt{n \log n})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aichholzer, O., Cabello, S., Fabila-Monroy, R., Flores-Peñaloza, D., Hackl, T., Huemer, C., Hurtado, F., Wood, D.R.: Edge-removal and non-crossing configurations in geometric graphs. Discrete Math. Theor. Comput. Sci. 12, 75-86 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Barba, L., Fabila-Monroy, R., Lara, D., Leaños, J., Rodríguez, C., Salazar, G., Zaragoza, F.: The Erdős-Sós conjecture for geometric graphs. Discrete Math. Theor. Comput. Sci. 15, 93-100 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bialostocki, A., Roditty, Y.: A monotone path in an edge-ordered graph. Internat. J. Math. Math. Sci. 10, 315-320 (1987)

    Article  MathSciNet  Google Scholar 

  4. P. Brass, G. Károlyi, and P. Valtr, A Turán-type extremal theory of convex geometric graphs, in: Discrete and Computational Geometry, Algorithms Combin., vol 25. Springer (Berlin, 2003), pp. 275-300

  5. M. Bucic, M. Kwan, A. Pokrovskiy, B. Sudakov, T. Tran, and A. Z. Wagner, Nearly-linear monotone paths in edge-ordered graphs, manuscript, 2018

  6. Calderbank, A.R., Chung, F.R.K., Sturtevant, D.G.: Increasing sequences with nonzero block sums and increasing paths in edge-ordered graphs. Discrete Math. 50, 15-28 (1984)

    Article  MathSciNet  Google Scholar 

  7. Chvátal, V., Komlós, J.: Some combinatorial theorems on monotonicity. Canad. Math. Bull. 14, 151-157 (1971)

    Article  MathSciNet  Google Scholar 

  8. Conlon, D., Fox, J., Sudakov, B.: Hypergraph Ramsey numbers. J. Amer. Math. Soc. 23, 247-266 (2010)

    Article  MathSciNet  Google Scholar 

  9. P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. (3), 2 (1952), 417-439

  10. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463-470 (1935)

    MathSciNet  MATH  Google Scholar 

  11. R. L. Graham and D. J. Kleitman, Increasing paths in edge ordered graphs, Period. Math. Hungar., 3 (1973), 141-148 (collection of articles dedicated to the memory of Alfréd Rényi, II)

  12. Gyárfás, A.: Ramsey and Turán-type problems for non-crossing subgraphs of bipartite geometric graphs. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 54, 47-56 (2011)

    MathSciNet  Google Scholar 

  13. Károlyi, G., Pach, J., Tóth, G., Ramsey-type results for geometric graphs. I, ACM Symposium on Computational Geometry, ACM Symposium on Computational Geometry (Philadelphia, PA, : Discrete Comput. Geom. 18(1997), 247-255 (1996)

  14. Gy. Károlyi, J. Pach, G. Tóth, and P. Valtr, Ramsey-type results for geometric graphs. II, ACM Symposium on Computational Geometry (Nice, : Discrete Comput. Geom. 20(1998), 375-388 (1997)

  15. Lavrov, M., Loh, P.: Increasing hamiltonian paths in random edge orderings. Random Structures Algorithms 48, 588-611 (2016)

    Article  MathSciNet  Google Scholar 

  16. A. Martinsson, Most edge-orderings of \({K}_n\) have maximal altitude, manuscript, 2016

  17. Milans, K.G.: Monotone paths in dense edge-ordered graphs. J. Comb. 8, 423-437 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Mynhardt, C.M., Burger, A.P., Clark, T.C., Falvai, B., Henderson, N.D.R.: Altitude of regular graphs with girth at least five. Discrete Math. 294, 241-257 (2005)

    Article  MathSciNet  Google Scholar 

  19. Roditty, Y., Shoham, B., Yuster, R.: Monotone paths in edge-ordered sparse graphs. Discrete Math. 226, 411-417 (2001)

    Article  MathSciNet  Google Scholar 

  20. J. De Silva, T. Molla, F. Pfender, T. Retter, and M. Tait, Increasing paths in edge-ordered graphs: the hypercube and random graphs, manuscript, 2015

  21. Yuster, R.: Large monotone paths in graphs with bounded degree. Graphs Combin. 17, 579-587 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Duque.

Additional information

F. Duque: Partially supported by CONACYT (Mexico), grant 253261.

R. Fabila-Monroy: Partially supported by projects DICYT 041933PL Vicerrectoría de Investigación, Desarrollo e Innovación USACH (Chile), and Programa Regional STICAMSUD 19-STIC-02.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duque, F., Fabila-Monroy, R., Hidalgo-Toscano, C. et al. Non-crossing monotone paths and binary trees in edge-ordered complete geometric graphs. Acta Math. Hungar. 165, 28–39 (2021). https://doi.org/10.1007/s10474-021-01166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-021-01166-2

Key words and phrases

Mathematics Subject Classification

Navigation