Abstract
We give an upper bound on the number of extensions of a triple to a quadruple for the Diophantine m-tuples with the property D(4). We also confirm the conjecture of the uniqueness of such an extension in some special cases.
This is a preview of subscription content, access via your institution.
References
Lj. Baćić and A. Filipin, On the extensibility of \(D(4)\)-pair \(\{k-2,k+2\}\), J. Comb. Number Theory, 5 (2013), 181–197
Lj. Baćić and A. Filipin, The extensibility of \(D(4)\)-pairs, Math. Commun., 18 (2013), no. 2, 447–456
Bennett, M.A., Cipu, M., Mignotte, M., Okazaki, R.: On the number of solutions of simultaneous Pell equations. II, Acta Arith. 122, 407–417 (2006)
Bliznac, M., Filipin, A.: An upper bound for the number of Diophantine quintuples. Bull. Aust. Math. Soc. 94, 384–394 (2016)
M. Bliznac Trebješanin and A. Filipin, Nonexistence of \(D(4)\)-quintuples, J. Number Theory, 194 (2019), 170–217
Cipu, M.: A new approach to the study of \(D(-1)\)-quadruples. RIMS Kokyuroku 2092, 122–129 (2018)
Cipu, M., Fujita, Y., Miyazaki, T.: On the number of extensions of a Diophantine triple. Int. J. Number Theory 14, 899–917 (2018)
Cipu, M., Fujita, Y.: Bounds for Diophantine quintuples. Glas. Mat. Ser. III(50), 25–34 (2015)
A. Dujella, Diophantine \(m\)-tuples, web.math.pmf.unizg.hr/\(\sim \)duje/dtuples.html
Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)
A. Dujella and M. Mikić, On the torsion group of elliptic curves induced by \(D(4)\)-triples, An. Ştiinţ. Univ. ``Ovidius'' Constanţa Ser. Mat., 22 (2014), 79–90
A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), 49 (1998), 291–306
Dujella, A., Ramasamy, A.M.S.: Fibonacci numbers and sets with the property \(D(4)\). Bull. Belg. Math. Soc. Simon Stevin 12(3), 401–412 (2005)
Filipin, A.: There does not exist a \(D(4)\)-sextuple. J. Number Theory 128, 1555–1565 (2008)
Filipin, A.: On the size of sets in which \(xy + 4\) is always a square. Rocky Mountain J. Math. 39, 1195–1224 (2009)
Filipin, A.: An irregular \(D(4)\)-quadruple cannot be extended to a quintuple. Acta Arith. 136, 167–176 (2009)
Filipin, A.: The extension of some \(D(4)\)-pairs. Notes Number Theory Discrete Math. 23, 126–135 (2017)
A. Filipin, Bo He and A. Togbé, On a family of two-parametric D(4)-triples, Glas. Mat. Ser. III, 47 (2012), 31–51
Fujita, Y., Miyazaki, T.: The regularity of Diophantine quadruples. Trans. Amer. Math. Soc. 370, 3803–3831 (2018)
He, B., Togbé, A., Ziegler, V.: There is no Diophantine quintuple. Trans. Amer. Math. Soc. 371, 6665–6709 (2019)
Laurent, M.: Linear forms in two logarithms and interpolation determinants II. Acta Arith. 133, 325–348 (2008)
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Math., 64 (2000), 1217–1269
Rickert, J.H.: Simultaneous rational approximations and related Diophantine equations. Proc. Cambridge Philos. Soc. 113, 461–472 (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
The author was supported by the Croatian Science Foundation under the project no. IP-2018-01-1313.
Rights and permissions
About this article
Cite this article
Bliznac Trebješanin, M. Extension of a Diophantine triple with the property \(D(4)\). Acta Math. Hungar. 163, 213–246 (2021). https://doi.org/10.1007/s10474-020-01128-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-020-01128-0
Key words and phrases
- Diophantine tuple
- Pell equation
- reduction method
- linear form in logarithms
Mathematics Subject Classification
- 11D09
- 11D45
- 11J86