Skip to main content
Log in

On a hybrid version of the Vinogradov mean value theorem

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Given a family \(\varphi = (\varphi_1, \ldots, \varphi_d)\in \mathbb{Z}[T]^d\) of d distinct nonconstant polynomials, a positive integer \(k\le d\) and a real positive parameter \(\rho\), we consider the mean value

$$M_{k, \rho} (\varphi, N) = \int_{{\rm x} \in [0,1]^k} \sup_{{\rm y} \in [0,1]^{d-k}} | S_{\varphi}({\rm x}, {\rm y}; N) |^\rho \,d{\rm x} $$

of exponential sums

$$S_{\varphi}({\rm x}, {\rm y}; N) = \sum_{n=1}^{N} \exp\biggl(2 \pi i\biggl(\sum_{j=1}^k x_j \varphi_j(n)+ \sum_{j=1}^{d-k}y_j\varphi_{k+j}(n)\biggr)\biggr), $$

where \({\rm x} = (x_1, \ldots, x_k)\) and \({\rm y} =(y_1, \ldots, y_{d-k})\). The case of polynomials \(\varphi_i(T) = T^i, i =1, \ldots, d\) and \(k=d\) corresponds to the classical Vinaogradov mean value theorem.

Here motivated by recent works of Wooley [14] and the authors [9] on bounds on \({\rm sup}_{{\rm y} \in [0,1]^{d-k}} | S_{\varphi}({\rm x}, {\rm y}; N) |\) for almost all \({\rm x} \in [0,1]^k\), we obtain nontrivial bounds on \(M_{k, \rho} (\varphi, N)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Anderson, B. Cook, K. Hughes and A. Kumchev, On the ergodic Waring–Goldbach problem, arxiv.org/abs/1703.02713 (2017)

  2. T. C. Anderson, B. Cook, K. Hughes and A. Kumchev, Improved \(\ell ^p\)-boundedness for integral \(k\)-spherical maximal functions, Discrete Anal. (2018), Paper No. 10, 18 pp

  3. T. C. Anderson, A. Kumchev and E. A. Palsson, Discrete maximal operators over surfaces of higher codimension, arxiv.org/abs/2006.09968 (2020)

  4. Baker, R.C.: Metric number theory and the large sieve. J. London Math. Soc. 24, 34–40 (1981)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J.: On the Vinogradov mean value. Proc. Steklov Math. Inst. 296, 30–40 (2017)

    Article  Google Scholar 

  6. Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three. Ann. Math. 184, 633–682 (2016)

    Article  MathSciNet  Google Scholar 

  7. Brüdern, J.: Approximations to Weyl sums. Acta Arith. 184, 287–296 (2018)

    Article  MathSciNet  Google Scholar 

  8. Brüdern, J., Daemen, D.: Imperfect mimesis of Weyl sums. Internat. Math. Res. Notices 2009, 3112–3126 (2009)

    Article  MathSciNet  Google Scholar 

  9. C. Chen and I. E. Shparlinski, New bounds of Weyl sums, Internat. Math. Res. Notices (to appear)

  10. Drmota, M., Tichy, R.: Sequences. Springer-Verlag (Berlin, Discrepancies and Applications (1997)

    MATH  Google Scholar 

  11. H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. (Providence, RI, 2004)

  12. Weyl, H.: Über die Gleichverteilung von Zahlen mod Eins. Math. Ann. 77, 313–352 (1916)

    Article  MathSciNet  Google Scholar 

  13. Wooley, T.D.: The cubic case of the main conjecture in Vinogradov's mean value theorem. Adv. in Math. 294, 532–561 (2016)

    Article  MathSciNet  Google Scholar 

  14. Wooley, T.D.: Perturbations of Weyl sums. Internat. Math. Res. Notices 2016, 2632–2646 (2016)

    Article  MathSciNet  Google Scholar 

  15. Wooley, T.D.: Nested efficient congruencing and relatives of Vinogradov's mean value theorem. Proc. London Math. Soc. 118, 942–1016 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Angel Kumchev for useful discussions and comparison our work with the settings of [1,2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Shparlinski.

Additional information

This work was supported by ARC Grant DP170100786.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Shparlinski, I.E. On a hybrid version of the Vinogradov mean value theorem. Acta Math. Hungar. 163, 1–17 (2021). https://doi.org/10.1007/s10474-020-01111-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01111-9

Key words and phrases

Mathematics Subject Classification

Navigation