Skip to main content
Log in

Independence algebras, basis algebras and the distributivity condition

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Stable basis algebras were introduced by Fountain and Gould and developed in a series of articles. They form a class of universal algebras, extending that of independence algebras, and reflecting the way in which free modules over well-behaved domains generalise vector spaces. If a stable basis algebra \(\mathbb{B}\) satisfies the distributivity condition (a condition satisfied by all the previously known examples), it is a reduct of an independence algebra \(\mathbb{A}\) . Our first aim is to give an example of an independence algebra not satisfying the distributivity condition.

Gould showed that if a stable basis algebra \(\mathbb{B}\) with the distributivity condition has finite rank, then so does the independence algebra \(\mathbb{A}\) of which it is a reduct, and that in this case the endomorphism monoid \({\rm End}(\mathbb{B})\) of \(\mathbb{B}\) is a left order in the endomorphism monoid \({\rm End}(\mathbb{A})\) of \(\mathbb{A}\). We complete the picture by determining when \({\rm End}(\mathbb{B})\) is a right, and hence a two-sided, order in \({\rm End}(\mathbb{A})\). In fact (for rank at least 2), this happens precisely when every element of \({\rm End}(\mathbb{A})\) can be written as \({\alpha}^{\sharp} \beta\) where \(\alpha,\beta\in{\rm End}(\mathbb{B})\), \({\alpha}^{\sharp}\) is the inverse of \(\alpha\) in a subgroup of \({\rm End}(\mathbb{A})\) and \(\alpha\) and \(\beta\) have the same kernel. This is equivalent to \({\rm End}(\mathbb{B})\) being a special kind of left order in \({\rm End}(\mathbb{A})\) known as straight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araújo, J.: Idempotent generated endomorphisms of an independence algebra. Semigroup Forum 67, 464–467 (2003)

    Article  MathSciNet  Google Scholar 

  2. Araújo, J., Edmundo, M., Givant, S.: \(v^{*} \)-algebras, independence algebras and logic. Internat. J. Algebra Comput. 21, 1237–1257 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bergman, G.M.: Constructing division rings as module-theoretic direct limits. Trans. Amer. Math. Soc. 354, 2079–2114 (2002)

    Article  MathSciNet  Google Scholar 

  4. Cameron, P.J., Szabó, C.: Independence algebras. J. London Math. Soc. 61, 321–334 (2000)

    Article  MathSciNet  Google Scholar 

  5. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Mathematical Surveys 7, vols. 1 and 2, American Mathematical Society (1961)

  6. Cohn, P.M.: Free Ideal Rings and Localisation in General Rings. Cambridge University Press, New Mathematical Monographs (2006)

    Book  Google Scholar 

  7. Evans, D.M., Ferreira, M.S.: The geometry of Hrushovski constructions, I: The uncollapsed case. Ann. Pure Appl. Logic 162, 474–488 (2011)

    Article  MathSciNet  Google Scholar 

  8. Fountain, J.: Products of idempotent integer matrices. Math. Proc. Cambridge Phil. Soc. 110, 431–441 (1991)

    Article  MathSciNet  Google Scholar 

  9. Fountain, J., Gould, V.: Orders in rings without identity. Comm. Algebra 18, 3085–3110 (1990)

    Article  MathSciNet  Google Scholar 

  10. Fountain, J., Gould, V.: Relatively free algebras with weak exchange properties. J. Australian Math. Soc. 75, 355–384 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fountain, J., Gould, V.: Endomorphisms of relatively free algebras with weak exchange properties. Algebra Universalis 51, 257–285 (2004)

    Article  MathSciNet  Google Scholar 

  12. Fountain, J., Gould, V.: Products of idempotent endomorphisms of relatively free algebras with weak exchange properties. Proc. Edinburgh Math. Soc. 50, 343–362 (2007)

    Article  MathSciNet  Google Scholar 

  13. Fountain, J., Lewin, A.: Products of idempotent endomorphisms of an independence algebra of finite rank. Proc. Edinburgh Math. Soc. 35, 493–500 (1992)

    Article  MathSciNet  Google Scholar 

  14. Fountain, J., Lewin, A.: Products of idempotent endomorphisms of an independence algebra of infinite rank. Math. Proc. Cambridge Phil. Soc. 114, 303–309 (1993)

    Article  MathSciNet  Google Scholar 

  15. Fountain, J.B., Petrich, M.: Completely 0-simple semigroups of quotients. J. Algebra 101, 365–402 (1986)

    Article  MathSciNet  Google Scholar 

  16. S. R. Givant, A representation theorem for universal classes of algebras in which all members are free, Notices Amer. Math. Soc., 19 (1972) A–767

  17. Gould, V.: Independence algebras. Algebra Universalis 33, 294–318 (1995)

    Article  MathSciNet  Google Scholar 

  18. Gould, V.: Abundant and ample straight left orders. Period. Math. Hungar. 46, 171–179 (2003)

    Article  MathSciNet  Google Scholar 

  19. V. Gould, Independence algebras, basis algebras and semigroups of quotients, Proc. Edinburgh Math. Soc. (2), 53 (2010), 697–729

  20. Grätzer, G.: Universal Algebra. Van Nostrand, Princeton, NJ (1968)

    MATH  Google Scholar 

  21. Gray, R., Ruškuc, N.: On maximal subgroups of free idempotent generated semigroups. Israel J. Math. 189, 147–176 (2012)

    Article  MathSciNet  Google Scholar 

  22. Howie, J.M.: The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41, 707–716 (1966)

    Article  MathSciNet  Google Scholar 

  23. Hrushovski, E.: A new strongly minimal set. Ann. Pure Appl. Logic 62, 147–166 (1993)

    Article  MathSciNet  Google Scholar 

  24. Gray, R.: Idempotent rank in endomorphism monoids of finite independence algebras. Proc. Royal Soc. Edinburgh: Section A 137A, 303–331 (2007)

    Article  MathSciNet  Google Scholar 

  25. J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press (Oxford, 1995)

  26. Laffey, T.: Products of idempotent matrices. Linear Multilinear Algebra 14, 309–314 (1983)

    Article  MathSciNet  Google Scholar 

  27. M. V. Lawson, The structure theory of abundant semigroups, PhD Thesis, York (1995)

  28. Marczewski, E.: A general scheme of the notions of independence in mathematics. Bull Acad. Polish Sci. 6, 731–736 (1958)

    MathSciNet  MATH  Google Scholar 

  29. McKenzie, R.N., McNulty, G.F., Taylor, W.T.: Algebra. Lattices, Varieties, Wadsworth (1983)

    Google Scholar 

  30. W. Narkiewicz, Independence in a certain class of abstract algebras, Fund. Math., 50 (1961/62), 333–340

  31. K. S. S. Nambooripad, Structure of regular semigroups. I, Mem. Amer. Math. Soc., 22 (1979), no. 224

  32. Ruitenberg, W.: Products of idempotent matrices over Hermite domains. Semigroup Forum 46, 371–378 (1993)

    Article  MathSciNet  Google Scholar 

  33. Urbanik, K.: Linear independence in abstract algebras. Coll. Math. 14, 233–255 (1966)

    Article  MathSciNet  Google Scholar 

  34. Zeigler, M.: An exposition of Hrushovski's New Strongly Minimal Set. Ann. Pure Appl. Logic 164, 1507–1519 (2013)

    Article  MathSciNet  Google Scholar 

  35. B. Zilber, Strongly minimal countably categorical theories. II, Sib. Math. J., 25 (1984) 71–88

  36. B. Zilber, Strongly minimal countably categorical theories. III, Sib. Math. J., 25 (1984), 63–77

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bentz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentz, W., Gould, V. Independence algebras, basis algebras and the distributivity condition. Acta Math. Hungar. 162, 419–444 (2020). https://doi.org/10.1007/s10474-020-01084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01084-9

Key words and phrases

Mathematics Subject Classification

Navigation