Skip to main content
Log in

Digit frequencies of beta-expansions

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(\beta >1\) be a non-integer. First we show that Lebesgue almost every number has a \(\beta \)-expansion of a given frequency if and only if Lebesgue almost every number has infinitely many \(\beta \)-expansions of the same given frequency. Then we deduce that Lebesgue almost every number has infinitely many balanced \(\beta \)-expansions, where an infinite sequence on the finite alphabet \(\{0,1 , \ldots ,m\}\) is called balanced if the frequency of the digit \(k\) is equal to the frequency of the digit \(m-k\) for all \(k\in \{0,1 , \ldots ,m\}\). Finally we consider variable frequency and prove that for every pseudo-golden ratio \(\beta \in (1,2)\), there exists a constant \(c=c(\beta )>0\) such that for any \(p\in [\frac{1}{2}-c,\frac{1}{2}+c]\), Lebesgue almost every \(x\) has infinitely many \(\beta \)-expansions with frequency of zeros equal to \(p\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allouche, J.-P., Clarke, M., Sidorov, N.: Periodic unique beta-expansions: the Sharkovskiĭ ordering. Ergodic Theory Dynam. Systems 29, 1055–1074 (2009)

    Article  MathSciNet  Google Scholar 

  2. Allouche, J.-P., Cosnard, M.: Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set. Acta Math. Hungar. 91, 325–332 (2001)

    Article  MathSciNet  Google Scholar 

  3. S. Baker, Generalised golden ratios over integer alphabets, Integers, 14 (2014), Paper No. A15, 28 pp

  4. S. Baker, Digit frequencies and self-affine sets with non-empty interior, Ergodic Theory Dynam. Systems, (first published online in 2018), 33 pp

  5. Baker, S.: Exceptional digit frequencies and expansions in non-integer bases. Monatsh. Math. 190, 1–31 (2019)

    Article  MathSciNet  Google Scholar 

  6. Baker, S., Kong, D.: Numbers with simply normal \(\beta \)-expansions. Math. Proc. Cambridge Philos. Soc. 167, 171–192 (2019)

    Article  MathSciNet  Google Scholar 

  7. S. Baker and N. Sidorov, Expansions in non-integer bases: lower order revisited, Integers, 14 (2014), Paper No. A57, 15 pp

  8. Blanchard, F.: \(\beta \)-expansions and symbolic dynamics. Theoret. Comput. Sci. 65, 131–141 (1989)

    Article  MathSciNet  Google Scholar 

  9. E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo (2), 27 (1909) 247–271

  10. Boyland, P., de Carvalho, A., Hall, T.: On digit frequencies in \(\beta \)-expansions. Trans. Amer. Math. Soc. 368, 8633–8674 (2016)

    Article  MathSciNet  Google Scholar 

  11. Bugeaud, Y., Liao, L.: Uniform Diophantine approximation related to \(b\)-ary and \({\beta }\)-expansions. Ergodic Theory Dynam. Systems 36, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  12. de Vries, M., Komornik, V.: Unique expansions of real numbers. Adv. Math. 221, 390–427 (2009)

    Article  MathSciNet  Google Scholar 

  13. H. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser., 20 (1949), 31–36

  14. Erdős, P., Joó, I., Komornik, V.: Characterization of the unique expansions \( 1=\sum ^{\infty } _ i= 1 q^{-n_ i} \) and related problems. Bull. Soc. Math. France 118, 377–390 (1990)

    Article  MathSciNet  Google Scholar 

  15. Erdős, P., Joó, I., Komornik, V.: On the number of \(q\)-expansions. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 37, 109–118 (1994)

    MathSciNet  MATH  Google Scholar 

  16. K. J. Falconer, Fractal geometry: Mathematical Foundations and Applications, third edition, John Wiley \(\&\) Sons, Ltd. (Chichester, 2014)

  17. Fan, A.-H., Wang, B.-W.: On the lengths of basic intervals in beta expansions. Nonlinearity 25, 1329–1343 (2012)

    Article  MathSciNet  Google Scholar 

  18. Frougny, C., Solomyak, B.: Finite beta-expansions. Ergodic Theory Dynam. Systems 12, 713–723 (1992)

    Article  MathSciNet  Google Scholar 

  19. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer bases. Math. Res. Lett. 8, 535–543 (2001)

    Article  MathSciNet  Google Scholar 

  20. Jordan, T., Shmerkin, P., Solomyak, B.: Multifractal structure of Bernoulli convolutions. Math. Proc. Cambridge Philos. Soc. 151, 521–539 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kong, D., Li, W.: Hausdorff dimension of unique beta expansions. Nonlinearity 28, 187–209 (2015)

    Article  MathSciNet  Google Scholar 

  22. C. Kopf, Invariant measures for piecewise linear transformations of the interval, Appl. Math. Comput., 39 (1990), part II, 123–144

  23. Li, B., Wu, J.: Beta-expansion and continued fraction expansion. J. Math. Anal. Appl. 339, 1322–1331 (2008)

    Article  MathSciNet  Google Scholar 

  24. Li, Y.-Q., Li, B.: Distributions of full and non-full words in beta-expansions. J. Number Theory 190, 311–332 (2018)

    Article  MathSciNet  Google Scholar 

  25. Parry, W.: On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)

    Article  MathSciNet  Google Scholar 

  26. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8, 477–493 (1957)

    Article  MathSciNet  Google Scholar 

  27. Schmeling, J.: Symbolic dynamics for \(\beta \)-shifts and self-normal numbers. Ergodic Theory Dynam. Systems 17, 675–694 (1997)

    Article  MathSciNet  Google Scholar 

  28. Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12, 269–278 (1980)

    Article  MathSciNet  Google Scholar 

  29. Sidorov, N.: Almost every number has a continuum of \(\beta \)-expansions. Amer. Math. Monthly 110, 838–842 (2003)

    MathSciNet  MATH  Google Scholar 

  30. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag (New York–Berlin, 1982).

  31. K. M. Wilkinson, Ergodic properties of a class of piecewise linear transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31 (1974/75), 303–328

Download references

Acknowledgement

The author is grateful to Professor Jean-Paul Allouche for his advices on a former version of this paper, and also grateful to the Oversea Study Program of Guangzhou Elite Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-Q. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ. Digit frequencies of beta-expansions. Acta Math. Hungar. 162, 403–418 (2020). https://doi.org/10.1007/s10474-020-01032-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01032-7

Key words and phrases

Mathematics Subject Classification

Navigation