Abstract
We offer a new approach to spectral synthesis on affine groups. The idea is to consider solution spaces of systems of linear partial differential equations corresponding to invariant differential operators with respect to some closed subgroup of the general linear group on \(\mathbb{R}^n\). We show that a certain type of spherical spectral analysis and spectral synthesis holds for such solution spaces.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
J. Dieudonné, Treatise on Analysis, Vol. VI, Academic Press, Inc. (New York–London, 1978)
G. van Dijk, Introduction to Harmonic Analysis and Generalized Gelfand Pairs, de Gruyter Studies in Mathematics, vol. 36, Walter de Gruyter & Co. (Berlin, 2009)
L. Ehrenpreis, Mean periodic functions. I. Varieties whose annihilator ideals are principal, Amer. J. Math., 77 (1955), 293–328
L. Ehrenpreis, Appendix to the paper “Mean periodic functions. I'', Amer. J. Math., 77 (1955), 731–733
Elliott, R.J.: Two notes on spectral synthesis for discrete Abelian groups. Proc. Cambridge Philos. Soc. 61, 617–620 (1965)
Elliott, R.J.: Some results in spectral synthesis. Proc. Cambridge Philos. Soc. 61, 395–424 (1965)
D. I. Gurevič, Counterexamples to a problem of L. Schwartz, Funkcional. Anal. i Priložen., 9 (1975), 29–35
S. Helgason, Differential geometry and symmetric spaces, Academic Press (New York–London, 1962)
Helgason, S.: Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol. 83. American Mathematical Society (Providence, RI (2000)
Laczkovich, M., Székelyhidi, G.: Harmonic analysis on discrete abelian groups. Proc. Amer. Math. Soc. 133, 1581–1586 (2005)
Laczkovich, M., Székelyhidi, L.: Spectral synthesis on discrete abelian groups. Math. Proc. Cambridge Philos. Soc. 143, 103–120 (2007)
Malgrange, B.: Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier (Grenoble) 6, 271–355 (1956)
Schwartz, L.: Théorie générale des fonctions moyenne-périodiques. Ann. of Math. 48, 857–929 (1947)
Székelyhidi, L.: Spherical spectral synthesis. Acta Math. Hungar. 153, 120–142 (2017)
Takeuchi, M.: Modern Spherical Functions, Translations of Mathematical Monographs, vol. 135. American Mathematical Society (Providence, RI (1994)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was partly supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. K11165.
Rights and permissions
About this article
Cite this article
Székelyhidi, L. Spectral synthesis and partial differential equations. Acta Math. Hungar. 161, 31–47 (2020). https://doi.org/10.1007/s10474-019-01015-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-019-01015-3