Skip to main content
Log in

Pell surfaces

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In 1826 Abel started the study of the polynomial Pell equationx2g(u)y2 = 1. Its solvability in polynomials x(u), y(u) depends on a certain torsion point on the Jacobian of the hyperelliptic curve v2 = g(u). In this paper we study the affine surfaces defined by the Pell equations in 3-space with coordinatesx, y, u, and aim to describe all affine lines on it. These are polynomial solutions of the equation x(t)2g(u(t))y(t)2 = 1. Our results are rather complete when the degree of g is even but the odd degree cases are left completely open. For even degrees we also describe all curves on these Pell surfaces that have only 1 place at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Abel, Sur l'intégration de la formule différentielle \(\rho {dx}/\sqrt{R}\), \(R\) et \(\rho \) étant des fonctions entières, J. Reine Angew. Math., 1 (1826), 185–221; Oeuvres Complètes de Niels Henrik Abel (L. Sylow and S. Lie, eds.). Christiania (1881), pp. 104–144

  2. Shreeram, S.: Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)

    MathSciNet  Google Scholar 

  3. Dan Abramovich and Frans Oort, Stable maps and Hurwitz schemes in mixed characteristics, in: Advances in Algebraic Geometry Motivated by Physics (Lowell, MA, 2000), Contemp. Math., vol. 276, Amer. Math. Soc. (Providence, RI, 2001), pp. 89–100

  4. Enrique Artal Bartolo, José I. Cogolludo-Agustín, and Anatoly Libgober, Depth of cohomology support loci for quasi-projective varieties via orbifold pencils, Rev. Mat. Iberoam., 30 (2014), 373–404

  5. Bogomolov, Fedor, Tschinkel, Yuri: Curves in abelian varieties over finite fields. Int. Math. Res. Not. 4, 233–238 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bogomolov, Fedor, Tschinkel, Yuri: Rational curves and points on \(K3\) surfaces. Amer. J. Math. 127, 825–835 (2005)

    Article  MathSciNet  Google Scholar 

  7. Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21, Springer-Verlag (Berlin, 1990)

  8. Daniel Bragg and Max Lieblich, Perfect points on genus one curves and consequences for supersingular K3 surfaces, arXiv:1904.04803 (2019)

  9. Cadman, Charles, Chen, Linda: Enumeration of rational plane curves tangent to a smooth cubic. Adv. Math. 219, 316–343 (2008)

    Article  MathSciNet  Google Scholar 

  10. Chebyshev, P.L.: Sur linteègration des diffeérentielles qui contiennent une racine carreée d'un polynome du troisieème ou du quatrieème degrè. J. Math. Pures Appl. 2, 1–42 (1857)

    Google Scholar 

  11. Chen, Xi, Zhu, Yi: \(\mathbb{A}^1\) curves on log K3 surfaces. Adv. Math. 313, 718–745 (2017)

    Article  MathSciNet  Google Scholar 

  12. Decaup, Julie, Dubouloz, Adrien: Affine lines in the complement of a smooth plane conic. Boll. Unione Mat. Ital. 11, 39–54 (2018)

    Article  MathSciNet  Google Scholar 

  13. Denef, J.: The Diophantine problem for polynomial rings and fields of rational functions. Trans. Amer. Math. Soc. 242, 391–399 (1978)

    Article  MathSciNet  Google Scholar 

  14. Fujimoto, Mitsushi, Suzuki, Masakazu: Construction of affine plane curves with one place at infinity. Osaka J. Math. 39, 1005–1027 (2002)

    MathSciNet  MATH  Google Scholar 

  15. William Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2), 90 (1969), 542–575

  16. David Gabai and William H. Kazez, The classification of maps of surfaces, Bull. Amer. Math. Soc. (N.S.), 14 (1986), 283–286

  17. Alexander Grothendieck, Fondements de la géométrie algébrique [Extraits du Séminaire Bourbaki, 1957–1962], Secrétariat mathématique (Paris, 1962)

  18. Hazama, Fumio: Pell equations for polynomials. Indag. Mathem. 8, 387–397 (1997)

    Article  MathSciNet  Google Scholar 

  19. Eiji Horikawa, On deformations of holomorphic maps. II, J. Math. Soc. Japan, 26 (1974), 647–667

  20. Hurwitz, A.: Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–60 (1891)

    Article  MathSciNet  Google Scholar 

  21. A. J. Kanel-Belov and A. A. Chilikov, On the algorithmic undecidability of the embeddability problem for algebraic varieties over a field of characteristic zero, Mat. Zametki, 106: 307–310 (in Russian); translation in Math. Notes 106(2019), 299–302 (2019)

    Google Scholar 

  22. Paul Kluitmann, Hurwitz action and finite quotients of braid groups, in: Braids (Santa Cruz, CA, 1986), Contemp. Math., vol. 78, Amer. Math. Soc. (Providence, RI, 1988), pp. 299–325

  23. János Kollár, Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press (Cambridge, 2013); with the collaboration of Sándor Kovács

  24. János Kollár, Fundamental groups and path lifting for algebraic varieties, arXiv:1906.11816 (2019)

  25. János Kollár and Shigefumi Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press (Cambridge: with the collaboration of C. H. Clemens and A, Corti (1998). (translated from the 1998 Japanese original)

    Google Scholar 

  26. Libgober, Anatoly: On Mordell-Weil groups of isotrivial abelian varieties over function fields. Math. Ann. 357, 605–629 (2013)

    Article  MathSciNet  Google Scholar 

  27. David Masser and Umberto Zannier, Torsion points on families of simple abelian surfaces and Pell's equation over polynomial rings, J. Eur. Math. Soc. (JEMS), 17 (2015), 2379–2416 (with an appendix by E. V. Flynn)

  28. Masayoshi Miyanishi, Noncomplete Algebraic Surfaces, Lecture Notes in Mathematics, vol. 857, Springer-Verlag (Berlin–New York, 1981)

  29. David Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Tata Institute (Bombay, 1970)

  30. Natanzon, S.M.: Topology of \(2\)-dimensional coverings and meromorphic functions on real and complex algebraic curves. Selecta Math. Soviet. 12, 251–291 (1993)

    MathSciNet  Google Scholar 

  31. Poonen, Bjorn, Testa, Damiano, van Luijk, Ronald: Computing Néron-Severi groups and cycle class groups. Compos. Math. 151, 713–734 (2015)

    Article  MathSciNet  Google Scholar 

  32. M. Raynaud, Sous-variétés d'une variété abélienne et points de torsion, in: Arithmetic and Geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston (Boston, MA, 1983), pp. 327–352

  33. Raynaud, M.: Revêtements de la droite affine en caractéristique \(p>0\) et conjecture d'Abhyankar. Invent. Math. 116, 425–462 (1994)

    Article  MathSciNet  Google Scholar 

  34. Zachary L. Scherr, Rational polynomial Pell equations, Ph.D. thesis (2013), dept.math.lsa.umich.edu/research/number_theory/theses/zach_scherr.pdf

  35. Schmidt, Wolfgang: On continued fractions and diophantine approximation in power series fields. Acta Arithmetica 95, 139–166 (2000)

    Article  MathSciNet  Google Scholar 

  36. Matthias Schütt and Tetsuji Shioda, Mordell–Weil Lattices, (2019) (to appear)

  37. Serre, Jean-Pierre: Groupes algébriques et corps de classes, Publications de l'institut de mathématique de l'université de Nancago. VII, Hermann (Paris (1959)

    Google Scholar 

  38. Jean-Pierre Serre, Distribution asymptotique des valeurs propres des endomorphismes de Frobenius [d'après Abel, Chebyshev, Robinson, ...], arXiv:1807.11700

  39. Suzuki, Masakazu: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \({ C}^{2}\). J. Math. Soc. Japan 26, 241–257 (1974)

    Article  MathSciNet  Google Scholar 

  40. Suzuki, Masakazu: Affine plane curves with one place at infinity. Ann. Inst. Fourier (Grenoble) 49, 375–404 (1999)

    Article  MathSciNet  Google Scholar 

  41. N. Takahashi, Curves in the complement of a smooth plane cubic whose normalizations are \(a^1\), arXiv:alg-geom/960500 (2015)

  42. Tono, Keita: The projective characterization of elliptic plane curves which have one place at infinity. Saitama Math. J. 25, 35–46 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Keita Tono, The projective characterization of genus two plane curves which have one place at infinity, in: Affine Algebraic Geometry, World Sci. Publ. (Hackensack, NJ, 2013), pp. 285–299

  44. Ulmer, Douglas: Rational curves on elliptic surfaces. J. Algebraic Geom. 26, 357–377 (2017)

    Article  MathSciNet  Google Scholar 

  45. Padé approximant, (2019), en.wikipedia.org/wiki/Pad%C3%A9_approximant

  46. Umberto Zannier, Unlikely intersections and Pell's equations in polynomials, in: Trends in Contemporary Mathematics, Springer INdAM Ser., vol. 8, Springer (Cham, 2014), 151–169

  47. Zannier, Umberto: Hyperelliptic continued fractions and generalized Jacobians. Amer. J. Math. 141, 1–40 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank A.A. Chilikov and A.J. Kanel-Belov for posing the original question, D. Gabai, S. Mullane and Z. Scherr for help with the literature, L. Chen, S. Kovács, A. Libgober, M. Lieblich, J.-P. Serre, B. Totaro and J. Waldron for helpful conversations and comments. U. Zannier gave numerous comments, corrections and examples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kollár.

Additional information

Partial financial support was provided by the NSF under grant numbers DMS-1362960 and DMS-1440140 while the author was in residence at MSRI during the Spring 2019 semester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kollár, J. Pell surfaces. Acta Math. Hungar. 160, 478–518 (2020). https://doi.org/10.1007/s10474-019-01008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-019-01008-2

Key words and phrases

Mathematics Subject Classification

Navigation