Abstract
Motivated by a well-known result in extremal set theory, due to Nicolaas Govert de Bruijn and Paul Erdős, we consider curves in the unit n-cube \([0,1]^n\) of the form
where \(\alpha\) is a fixed real number in [0,1] and \(f_1, \ldots, f_{n-2}\) are injective measurable functions from [0,1] to [0,1]. We refer to such a curve A as an n-de Bruijn–Erdős-set. Under the additional assumption that all functions \(f_i, i=1,\ldots,n-2,\) are piecewise monotone, we show that the Hausdorff dimension of A is at most 1 as well as that its 1-dimensional Hausdorff measure is at most n-1. Moreover, via a walk along devil’s staircases, we construct a piecewise monotone n-de Bruijn–Erdős-set whose 1-dimensional Hausdorff measure equals n-1.
This is a preview of subscription content, access via your institution.
References
- 1.
Anderson, I.: Combinatorics of Finite Sets, Corrected reprint of the 1989 edition, Dover Publications, Inc. Mineola, NY (2002)
- 2.
C.J. Bishop and Y. Peres, Fractals in Probability and Analysis, Cambridge Studies in Advanced Mathematics, 162. Cambridge University Press (Cambridge, 2017)
- 3.
A. Blokhuis, A.E. Brouwer, A. Chowdhury, P. Frankl, T. Mussche, B. Patkós and T. Szőnyi, A Hilton–Milner theorem for vector spaces, Electron. J. Combin., 17 (2010), Research Paper 71, 12 pp
- 4.
Bogachev, V.I.: Measure Theory, vol. 1. Springer (2007)
- 5.
Cameron, P.J.: Combinatorics: Topics. Algorithms, Cambridge University Press, Techniques (1994)
- 6.
F. Coen, N. Gillman, T. Keleti, D. King and J. Zhu, Large sets with small injective projections, arXiv:1906.06288 (2019)
- 7.
N. G. de Bruijn and Erdős, On a combinatorial problem, Indag. Math., 10 (1948) 421–423
- 8.
Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor function. Expo. Math. 24, 1–37 (2006)
- 9.
V. Eiderman and M. Larsen, A rare plane set with Hausdorff dimension 2, arXiv:1904.09034 (2019)
- 10.
Engel, K.: A continuous version of a Sperner-type theorem. Elektron. Informationsverarb. Kybernet. 22, 45–50 (1986)
- 11.
K. Engel, Sperner Theory, Encyclopedia of Mathematics and its Applications, 65, Cambridge University Press (Cambridge, 1997)
- 12.
K. Engel, T. Mitsis and C. Pelekis, A fractal perspective on optimal antichains and intersecting subsets of the unit \(n\)-cube, arXiv:1707.04856 (2017)
- 13.
K. Engel, T. Mitsis, C. Pelekis and C. Reiher, Projection inequalities for antichains, Israel J. Math. (to appear), arXiv:1812.06496
- 14.
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press (1992)
- 15.
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd. (Chichester, 1990)
- 16.
J. Foran, The length of the graph of a one to one function from \([0,1]\) to \([0,1]\), Real Anal. Exchange, 25 (1999/00), 809–816
- 17.
P. Frankl and N. Tokushige, The Katona theorem for vector spaces, J. Comb. Theory, Ser. A, 120 (2013), 1578–1589
- 18.
P. Frankl and R. M. Wilson, The Erdős–Ko–Rado theorem for vector spaces, J. Combin. Theory, Ser. A, 43 (1986), 228–236
- 19.
G. O. H. Katona, Continuous versions of some extremal hypergraph problems, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 653–678, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978
- 20.
G. O. H. Katona, Continuous versions of some extremal hypergraph problems. II, Acta Math. Acad. Sci. Hungar., 35 (1980), 67–77
- 21.
A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag (New York, 1995)
- 22.
Klain, D.A., Rota, G.C.: A continuous analogue of Sperner's theorem. Comm. Pure Appl. Math. 50, 205–223 (1997)
- 23.
Katchalski, M., Meshulam, R.: An extremal problem for families of pairs of subspaces. European J. Combin. 15, 253–257 (1994)
- 24.
Zaanen, A.C., Luxemburg, W.A.J.: A real function with unusual properties, [Solution to Problem 5029]. Amer. Math. Monthly 70, 674–675 (1963)
Acknowledgement
We are grateful to the anonymous referee for bringing to our attention references [6] and [9].
Author information
Affiliations
Corresponding author
Additional information
Research of Doležal was supported by the GAČR project 17-27844S and RVO: 67985840.
Research of Pelekis was supported by the GAČR project 18-01472Y and RVO: 67985840.
Rights and permissions
About this article
Cite this article
Doležal, M., Mitsis, T. & Pelekis, C. The de Bruijn–Erdős theorem from a Hausdorff measure point of view. Acta Math. Hungar. 159, 400–413 (2019). https://doi.org/10.1007/s10474-019-00992-9
Received:
Revised:
Accepted:
Published:
Issue Date:
Key words and phrases
- de Bruijn–Erdős theorem
- Hausdorff measure
- devil’s staircase
- piecewise monotone function
Mathematics Subject Classification
- 05D05
- 28A78
- 26A30