Skip to main content
Log in

A sharp upper bound for the sum of reciprocals of least common multiples

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(n\) and \(k\) be positive integers such that \(n\ge k+1\) and let \(\{a_i\}_{i=1}^n\) be an arbitrary given strictly increasing sequence of positive integers. Let \(S_{n, k}:=\sum _{i=1}^{n-k} \frac{1}{ 1{\rm cm} (a_{i},a_{i+k})}\). Borwein [3] proved a conjecture of Erdős stating that if \(n\ge 2\), then \(S_{n,1}\le 1-\frac{1}{2^{n-1}}\), with the equality holding if and only if \(a_{i}=2^{i-1}\) for \(1\le i \le n\). In this paper, we first improve Borwein's upper bound by showing that \(S_{n,1}\le \frac{1}{a_{1}}(1-\frac{1}{2^{n-1}})\) with the equality occurring if and only if \(a_{i}=2^{i-1}a_{1}\) for all integers \(1 \le i \le n\). Then we use this improved upper bound to show that if \(n\ge 3\), then \(S_{n, 2}\le \frac{7}{6}+\frac{1}{2^{\lfloor \frac{n}{2}\rfloor }} (\frac{2}{3}\delta _{n}-\frac{7}{3})\), with the equality holding if and only if \(a_1=1, a_{2i}=2^i\) and \(a_{2i+1}=3\times 2^{i-1}\) for all integers \(1\le i\le \lfloor \frac{n}{2}\rfloor \), where \(\delta _{n}:=0\) if \(n\) is even, and 1 if \(n\) is odd. Furthermore, we show that if \(n\ge 7\), then \(S_{n, 3}\le \frac{17}{15}-\frac{37}{15}\cdot \frac{1}{2^{\lfloor \frac{n}{3}\rfloor }} +\frac{\epsilon _{n}}{2^{\lceil \frac{n}{3}\rceil }}\), with equality occurring if and only if \(a_i=i\) for all \(i\in \{1, 2, 3\}\) and \(a_{3i+1}=2^{i+1} (1\le i\le \lfloor \frac{n-1}{3}\rfloor ), a_{3i+2}= 5\times 2^{i-1} (1\le i\le \lfloor \frac{n-2}{3}\rfloor )\) and \(a_{3i+3}=3\times 2^i (1\le i\le \lfloor \frac{n}{3}\rfloor -1)\), where \(\epsilon _n=0\) if \(3 \mid n\), 1 if \(n\equiv 1~({\rm mod} \; 3)\) and \(\frac{9}{5}\) if \(n\equiv 2~({\rm mod} \; 3)\). We also present a tight upper bound for \(S_{n, 3}\) if \(n\in \{4,5,6\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman, P., Kalb, J., Stenger, A.: A limit involving least common multiples. Amer. Math. Monthly 109, 393–394 (2002)

    Article  Google Scholar 

  2. Behrend, F.A.: Generalization of an inequality of Heilbronn and Rohrbach. Bull. Amer. Math. Soc. 54, 681–684 (1948)

    Article  MathSciNet  Google Scholar 

  3. Borwein, D.: A sum of reciprocals of least common multiples. Canad. Math. Bull. 20, 117–118 (1978)

    Article  MathSciNet  Google Scholar 

  4. Chebyshev, P.L.: Mémoire sur les nombres premiers. J. Math. Pures Appl. 17, 366–390 (1852)

    Google Scholar 

  5. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Math. 84, Springer-Verlag (New York, 1990).

  6. van der Corput, J.G.: Inequalities involving least common multiple and other arithmetical functions. Indag. Math. 20, 5–15 (1958)

    Article  MathSciNet  Google Scholar 

  7. P. Erdős, On the irrationality of certain series: problems and results, in: New Advances in Transcendence Theory (Durham, 1986), Cambridge Univ. Press (Cambridge, 1988), pp. 102–109

  8. Erdős, P., Selfridge, J.: The product of consecutive integers is never a power. Illinois J. Math. 19, 292–301 (1975)

    Article  MathSciNet  Google Scholar 

  9. B. Farhi, Minoration non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 469–474

  10. Farhi, B.: Nontrivial lower bounds for the least common multiple of some finite sequences of integers. J. Number Theory 125, 393–411 (2007)

    Article  MathSciNet  Google Scholar 

  11. Farhi, B.: On the average asymptotic behavior of a certain type of sequences of integers. Integers 9, 555–567 (2009)

    Article  MathSciNet  Google Scholar 

  12. Goutziers, C.J.: On the least common multiple of a set of integers not exceeding \(N\). Indag. Math. 42, 163–169 (1980)

    Article  MathSciNet  Google Scholar 

  13. Hanson, D.: On the product of the primes. Canad. Math. Bull. 15, 33–37 (1972)

    Article  MathSciNet  Google Scholar 

  14. Heilbronn, H.A.: On an inequality in the elementary theory of numbers. Math. Proc. Camb. Philos. Soc. 33, 207–209 (1937)

    Article  Google Scholar 

  15. Nair, M.: On Chebyshev-type inequalities for primes. Amer. Math. Monthly 89, 126–129 (1982)

    Article  MathSciNet  Google Scholar 

  16. H. Rohrbach, Beweis einer zahlentheoretischen Ungleichung, J. Reine Angew. Math., 177 (1937), 193–196.

Download references

Acknowledgement

The author would like to thank the anonymous referee for careful reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hong.

Additional information

The research was partially supported by National Science Foundation of China, Grant No. 11671218.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.A. A sharp upper bound for the sum of reciprocals of least common multiples. Acta Math. Hungar. 160, 360–375 (2020). https://doi.org/10.1007/s10474-019-00984-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-019-00984-9

Key words and phrases

Mathematics Subject Classification

Navigation