Skip to main content
Log in

Type 1 and 2 sets for series of translates of functions

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Suppose \({\Lambda}\) is a discrete infinite set of nonnegative real numbers. We say that \({\Lambda}\) is type 1 if the series \(s(x)=\sum\nolimits_{\lambda\in\Lambda}f(x+\lambda)\) satisfies a “zero-one” law. This means that for any non-negative measurable \(f \colon \mathbb{R} \to [0,+ {\infty})\) either the convergence set \(C(f, {\Lambda})=\{x: s(x)<+ {\infty} \}= \mathbb{R}\) modulo sets of Lebesgue zero, or its complement the divergence set \(D(f, {\Lambda})=\{x: s(x)=+ {\infty} \}= \mathbb{R}\) modulo sets of measure zero. If \({\Lambda}\) is not type 1 we say that \({\Lambda}\) is type 2.

The exact characterization of type 1 and type 2 sets is not known. In this paper we continue our study of the properties of type 1 and 2 sets. We discuss sub and supersets of type 1 and 2 sets and give a complete and simple characterization of a subclass of dyadic type 1 sets. We discuss the existence of type 1 sets containing infinitely many elements independent over the rationals. Finally, we consider unions and Minkowski sums of type 1 and 2 sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aistleitner, C., Berkes, I., Seip, K., Weber, M.: Convergence of series of dilated functions and spectral norms of GCD matrices. Acta Arith. 168, 221–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, J.: From Khinchin's conjecture on strong uniformity to superuniform motions. Mathematika 61, 591–707 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Berkes, On the asymptotic behaviour of \(\sum f(n_kx)\). I. Main Theorems; II. Applications, Z. Wahrsch. verw. Gebiete, 34 (1976), 319–345, 347–365

  4. I. Berkes and M. Weber, On the convergence of \(\sum c_k f(n_kx)\), Mem. Amer. Math. Soc., 201 (2009), 72 pp

  5. Berkes, I., Weber, M.: On series \(\sum c_k f(kx)\) and Khinchin's conjecture. Israel J. Math. 201, 593–609 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Almost sure convergence and bounded entropy. Israel J. Math. 63, 79–97 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Buczolich, B. Maga, and G. Vértesy, On series of translates of positive functions. III, Anal. Math., 44 (2018), 185–205

  8. Buczolich, Z., Hanson, B., Maga, B., Vértesy, G.: Random constructions for translates of non-negative functions. J. Math. Anal. Appl. 468, 491–505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buczolich, Z., Kahane, J.-P., Mauldin, R.D.: On series of translates of positive functions. Acta Math. Hungar. 93, 171–188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Buczolich, J-P. Kahane, and R. D. Mauldin, Sur les séries de translatées de fonctions positives, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 261–264

  11. Buczolich, Z., Mauldin, R.D.: On the convergence of \(\sum ^\infty _{n=1}f(nx)\) for measurable functions. Mathematika 46, 337–341 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. Buczolich and R. D. Mauldin, On series of translates of positive functions. II, Indag. Mathem., N. S., 12 (2001), 317–327

  13. Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge University Press (1957)

  14. Haight, J.A.: A linear set of infinite measure with no two points having integral ratio. Mathematika 17, 133–138 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haight, J.A.: A set of infinite measure whose ratio set does not contain a given sequence. Mathematika 22, 195–201 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khinchin, A.: Ein Satz über Kettenbruche mit arithmetischen Anwendungen. Math. Zeit. 18, 289–306 (1923)

    Article  MATH  Google Scholar 

  17. Marstrand, J.M.: On Khinchin's conjecture about strong uniform distribution. Proc. London Math. Soc. 3, 540–556 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Quas, A., Wierdl, M.: Rates of divergence of non-conventional ergodic averages. Ergodic Theory Dynam. Systems 30, 233–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. H. v. Weizsäcker, Zum Konvergenzverhalten der Reihe \(\Sigma _{n=1}^{\infty }f(nt)\) für \(\lambda \) -messbare Funktionen \(f : \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\), Diplomarbeit, Universität München (1970).

Download references

Acknowledgements

Z. Buczolich thanks the Rényi Institute where he was a visiting researcher for the academic year 2017-18. B. Hanson would like to thank the Fulbright Commission, the Budapest Semesters in Mathematics, and the Rényi Institute for their generous support during the Spring of 2018, while he was visiting Budapest as a Fulbright scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Buczolich.

Additional information

Dedicated to the memory of Ákos Császár

Z. Buczolich was supported by the Hungarian National Research, Development and Innovation Office–NKFIH, Grant 124749.

B. Maga was supported by the ÚNKP-17-2 New National Excellence of the Hungarian Ministry of Human Capacities, and by the Hungarian National Research, Development and Innovation Office–NKFIH, Grant 124003.

G. Vértesy was supported by the Hungarian National Research, Development and Innovation Office–NKFIH, Grant 124749.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buczolich, Z., Hanson, B., Maga, B. et al. Type 1 and 2 sets for series of translates of functions. Acta Math. Hungar. 158, 271–293 (2019). https://doi.org/10.1007/s10474-019-00937-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-019-00937-2

Key words and phrases

Mathematics Subject Classification

Navigation