Acta Mathematica Hungarica

, Volume 157, Issue 2, pp 489–502 | Cite as

Homotopy investigation of classifying spaces of cobordisms of singular maps

  • A. SzűcsEmail author
  • T. Terpai


The classifying spaces of cobordisms of singular maps have two fairly different constructions. We expose a homotopy theoretical connection between them. As a corollary we show that the classifying spaces in some cases have a simple product structure.

Key words and phrases

singularity theory cobordism classifying space 

Mathematics Subject Classification

primary 57R45 secondary 57R90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnold, Normal forms of functions near degenerate critical points, the Weyl groups \(A_k\), \(D_k\), \(E_k\), and Lagrangian singularities, Funkts. Anal. Prilozh., 6 (1974), 3–25 (in Russian); translation in Funct. Anal. Appl., 6 (1972), 254– 272.Google Scholar
  2. 2.
    Barratt, M.G., Eccles, P.J.: \(\Gamma ^+\)-structures. I, Topology 13, 25–45 (1974)CrossRefzbMATHGoogle Scholar
  3. 3.
    F. R. Cohen, T. J. Lada and J. P. May, The Homology of Iterated Loop Spaces, Lecture Notes in Math., 533, Springer (Berlin–Heidelberg, 1976)Google Scholar
  4. 4.
    A. Hatcher, Algebraic Topology, hatcher/AT/ATch4.4.pdfGoogle Scholar
  5. 5.
    Jänich, K.: Symmetry properties of singularities of \(C^\infty \) functions. Math. Ann. 238, 147–156 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Mather, Stability of \(C^\infty \)-mappings. I, Ann. Math., 89 (1969), 89–104; II, Ann. Math., 87 (1968), 254–291; III, Publ. Math., Inst. Hautes Étud. Sci., 35 (1969), 127–156; IV, Publ. Math., Inst. Hautes Étud. Sci., 37 (1970), 223–248; V, Adv. Math., 4 (1970), 301–336; VI, in: Proceedings of Liverpool Singularities Symposium. I, Lect. Notes in Math., 192, Springer (Berlin, 1971), pp. 207–253Google Scholar
  7. 7.
    J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer (Berlin, 1972)Google Scholar
  8. 8.
    B. Morin, Formes canoniques des singularités d'une application différentiable, C. R. Acad. Sci. Paris, 260 (1965), 5662–5665, 6503–6506.Google Scholar
  9. 9.
    R. Rimányi, Doctoral thesis,
  10. 10.
    Rimányi, R., Szűcs, A.: Pontrjagin-Thom-type construction for maps with singularities. Topology 37, 1177–1191 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    E. H. Spanier, Algebraic Topology, Springer-Verlag (New York, 1966)Google Scholar
  12. 12.
    A. Szűcs, Cobordism of maps with simplest singularities, in: Topology Symposium (Siegen, 1979), Lecture Notes in Math., 788, Springer (Berlin, 1980)Google Scholar
  13. 13.
    Szűcs, A.: Cobordism of singular maps. Geom. Topol. 12, 2379–2452 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    T. Terpai, Fibration of classifying spaces in the cobordism theory of singular maps, Tr. Mat. Inst. Steklova, Osobennosti i Prilozheniya, 267 (2009), 280–287 (in Russian); translation in Proc. Steklov Inst. Math., 267 (2009), 270–277Google Scholar
  15. 15.
    Wall, C.T.C.: A second note on symmetry of singularities. Bull. London Math. Soc. 12, 347–354 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wells, R.: Cobordism groups of immersions. Topology 5, 281–294 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Whitney, The singularities of a smooth \(n\)-manifold in \((2n-1)\)-space, Ann. Math. (2), 45 (1944), 247–293Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of AnalysisEötvös Loránd University (ELTE)BudapestHungary

Personalised recommendations