Acta Mathematica Hungarica

, Volume 157, Issue 1, pp 154–157 | Cite as

A p-nilpotency criterion for finite groups

  • A. Díaz RamosEmail author
  • A. Viruel


We prove a p-nilpotency criterion for finite groups in terms of the element orders of its p′-reduced sections that extends a nilpotency criterion by Tărnăuceanu.

Key words and phrases

p-nilpotent finite group Euler’s totient function fusion system Frobenius’s p-complement theorem 

Mathematics Subject Classification

20D20 20D15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aschbacher, R. Kessar and B. Oliver, Fusion Systems in Algebra and Topology, London Mathematical Society Lecture Note Series, 391, Cambridge University Press (Cambridge, 2011).Google Scholar
  2. 2.
    Ballester-Bolinches A., Ezquerro L., Su N., Wang Y.: On the focal subgroup of a saturated fusion system. J. Algebra 468, 72–79 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benson D.J., Grodal J., Henke E.: Group cohomology and control of p-fusion. Invent. Math. 197, 491–507 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Broto C., Levi R., Oliver B.: Homotopy equivalences of p-completed classifying spaces of finite groups. Invent. Math. 151, 611–664 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Broto C., Levi R., Oliver B.: The homotopy theory of fusion systems. J. Amer. Math. Soc. 16, 779–856 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cantarero J., Scherer J., Viruel A.: Nilpotent p-local finite groups. Ark. Mat. 52, 203–225 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    D. A. Craven, The Theory of Fusion Systems. An Algebraic Approach, Cambridge Studies in Advanced Mathematics, 131, Cambridge University Press (Cambridge, 2011).Google Scholar
  8. 8.
    Díaz A.: A spectral sequence for fusion systems. Algebr. Geom. Topol. 14, 349–378 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Díaz Ramos A., Espinosa Baro A., Viruel A.: A cohomological characterization of nilpotent fusion systems. Proc. Amer. Math. Soc. 146, 1447–1450 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Díaz A., Glesser A., Park S., Stancu R.: Tate’s and Yoshida’s theorems on control of transfer for fusion systems. J. Lond. Math. Soc. 84, 475–494 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    González-Sánchez J., Ruiz A., Viruel A.: On Thompson’s p-complement theorems for saturated fusion systems. Kyoto J. Math. 55, 617–626 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gorenstein D.: Finite Groups. 2nd ed. Chelsea Publishing Co, New York (1980)zbMATHGoogle Scholar
  13. 13.
    Kessar R., Linckelmann M., Navarro G.: A characterisation of nilpotent blocks. Proc. Amer. Math. Soc. 143, 5129–5138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liao J., Zhang J.: Nilpotent fusion systems. J. Algebra 442, 438–454 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M. Tărnăuceanu, A generalization of the Euler’s totient function, Asian-Eur. J. Math., 8 (2015), article ID 1550087.Google Scholar
  16. 16.
    M. Tărnăuceanu, A nilpotency criterion for finite groups, Acta Math. Hungar. (to appear).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Departamento de Álgebra, Geometría y TopologíaUniversidad de MálagaMálagaSpain

Personalised recommendations