Skip to main content
Log in

An improved upper bound for the size of a sunflower-free family

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

We combine here Tao’s slice-rank bounding method and Gröbner basis techniques and apply it to the Erdős–Rado Sunflower Conjecture.

Let \({0\leq k\leq n}\) be integers. We prove that if \({\mathcal{F}}\) is a k-uniform family of subsets of [n] without a sunflower with 3 petals, then

$$|\mathcal{F}|\leq3 \left(\begin{array}{c} {n }\\ \lfloor n/3\rfloor \end{array}\right).$$

This result allows us to improve slightly a recent upper bound of Naslund and Sawin for the size of a sunflower-free family in 2[n].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, AMS (Providence, RI, 1994).

  2. J. Blasiak, T. Church, H. Cohn, J. A. Grochow and C. Umans, On cap sets and the group-theoretic approach to matrix multiplication, Disc. Anal., 3 (2017), 27 pp.

  3. A. M. Cohen, H. Cuypers and H. Sterk (eds.), Some Tapas of Computer Algebra, Springer-Verlag (Berlin, Heidelberg, 1999).

  4. D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag (Berlin, Heidelberg, 1992).

  5. P. Erdős, Problems and results on finite and infinite combinatorial analysis, in: Infinite and Finite Sets (Colloq. Keszthely 1973), Vol. I, Colloq. Math. Soc. J. Bolyai 10, North Holland (Amsterdam, 1975), pp. 403–424.

  6. Erdős P., Rado R.: Intersection theorems for systems of sets. J. London Math. Soc., 1, 85–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hegedűs G., Rónyai L.: Gröbner bases for complete uniform families. J. Alg. Comb., 17, 171–180 (2003)

    Article  MATH  Google Scholar 

  8. E. Naslund and W. Sawin, Upper bounds for sunflower-free sets, in: Forum of Mathematics, Sigma, Vol. 5, Cambridge University Press (2017).

  9. T. Tao, A symmetric formulation of the Croot–Lev–Pach–Ellenberg–Gijswijt capset bound, terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pachellenberg-gijswijt-capset-bound (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hegedűs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegedűs, G. An improved upper bound for the size of a sunflower-free family. Acta Math. Hungar. 155, 431–438 (2018). https://doi.org/10.1007/s10474-018-0798-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-0798-7

Key words and phrases

Mathematics Subject Classification

Navigation