Advertisement

Acta Mathematica Hungarica

, Volume 155, Issue 2, pp 393–405 | Cite as

Weak square and stationary reflection

  • G. Fuchs
  • A. Rinot
Article

Abstract

It is well-known that the square principle \({\square_\lambda}\) entails the existence of a non-reflecting stationary subset of λ+, whereas the weak square principle \({\square^{*} _\lambda}\) does not. Here we show that if μcf(λ) < λ for all μ < λ, then \({\square^{*} _\lambda}\) entails the existence of a non-reflecting stationary subset of \({E^{\lambda^+}_{{\rm cf}(\lambda)}}\) in the forcing extension for adding a single Cohen subset of λ+.

It follows that indestructible forms of simultaneous stationary reflection entail the failure of weak square. We demonstrate this by settling a question concerning the subcomplete forcing axiom (SCFA), proving that SCFA entails the failure of \({\square^{*} _\lambda}\) for every singular cardinal λ of countable cofinality.

Key words and phrases

weak square simultaneous stationary reflection SCFA 

Mathematics Subject Classification

primary 03E35 secondary 03E57 03E05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cummings J., Foreman M., Magidor M.: Squares, scales and stationary reflection. J. Math. Log. 1, 35–98 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cummings J., Magidor M.: Martin’s maximum and weak square. Proc. Amer. Math. Soc. 139, 3339–3348 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Devlin K.J.: Variations on \({\diamondsuit}\), J. Symbolic Logic. 44, 51–58 (1979)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    G. Fuchs, Hierarchies of forcing axioms, the continuum hypothesis and square principles, J. Symbolic Logic (to appear); preprint available at www.math.csi.cuny.edu/~fuchs/.
  5. 5.
    G. Fuchs, Closure properties of parametric subcompleteness, submitted in 2017; preprint available at www.math.csi.cuny.edu/~fuchs/ .
  6. 6.
    R. B. Jensen, Subcomplete forcing and \({\mathcal{L}}\) -forcing, in: E-Recursion, Forcing and C*-Algebras, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 27, World Sci. Publ. (Hackensack, NJ, 2014), pp. 83–182.Google Scholar
  7. 7.
    R. B. Jensen, Forcing axioms compatible with CH, Handwritten notes, available at www.mathematik.hu-berlin.de/~raesch/org/jensen.html (2009).
  8. 8.
    R. B. Jensen, Subproper and subcomplete forcing, Handwritten notes, available at www.mathematik.hu-berlin.de/~raesch/org/jensen.html (2009).
  9. 9.
    K. Kunen, Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co. (Amsterdam, 1983). An introduction to independence proofs, reprint of the 1980 original.Google Scholar
  10. 10.
    Larson P.: Separating stationary reflection principles. J. Symbolic Logic. 65, 247–258 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. Rinot, A relative of the approachability ideal, diamond and non-saturation, J. Symbolic Logic, 75 (2010) 1035–1065.Google Scholar
  12. 12.
    J. Silver, The independence of Kurepa’s conjecture and two-cardinal conjectures in model theory, in: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc. (Providence, RI, 1971), pp. 383–390.Google Scholar
  13. 13.
    S. Todorčević, Trees and linearly ordered sets, in: Handbook of Set-theoretic Topology, North-Holland (Amsterdam, 1984), pp. 235–293.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.The College of Staten Island (CUNY)Staten IslandU.S.A.
  2. 2.The Graduate Center (CUNY)New YorkU.S.A.
  3. 3.Department of MathematicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations