Skip to main content
Log in

Commutativity of integral quasi-arithmetic means on measure spaces

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \({(X, \mathscr{L}, \lambda)}\) and \({(Y, \mathscr{M}, \mu)}\) be finite measure spaces for which there exist \({A \in \mathscr{L}}\) and \({B \in \mathscr{M}}\) with \({0 < \lambda(A) < \lambda(X)}\) and \({0 < \mu(B) < \mu(Y)}\), and let \({I\subseteq \mathbf{R}}\) be a non-empty interval. We prove that, if f and g are continuous bijections \({I \to \mathbf{R}^+}\), then the equation

$$f^{-1}\Big(\int_X f\Big(g^{-1}\Big(\int_Y g \circ h \,d\mu\Big)\Big)d \lambda\Big) = g^{-1}\Big(\int_Y g\Big(f^{-1}\Big(\int_X f \circ h \,d\lambda\Big)\Big)d \mu\Big)$$

is satisfied by every \({\mathscr{L} \otimes \mathscr{M}}\)-measurable simple function \({h\colon X \times Y \to I}\) if and only if f = cg for some \({c \in \mathbf{R}^+}\) (it is easy to see that the equation is well posed). An analogous, but essentially different result, with f and g replaced by continuous injections \({I \to \mathbf R}\) and \({\lambda(X)=\mu(Y)=1}\), was recently obtained in [7].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aumann: Vollkommene Funktionalmittel und gewisse Kegelschnitteigenschaften. J. Reine Angew. Math., 176, 49–55 (1937)

    MathSciNet  MATH  Google Scholar 

  2. V. I. Bogachev, Measure Theory, Vol. I, Springer-Verlag (2007).

  3. Chew S.H.: A generalization of the quasilinear mean with applications to the measurement of income inequality and decison theory resolving the Allais paradox. Econometrica, 51, 1065–1092 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daróczy Z., Maksa G., Páles Z.: Functional equations involving means and their Gauss composition. Proc. Amer. Math. Soc., 134, 521–530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kahlig P., Matkowski J.: On the composition of homogeneous quasi-arithmetic means. J. Math. Anal. Appl., 216, 69–85 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality, Birkhäuser (Basel, 2009) (2nd edition).

  7. Leonetti P., Matkowski J., Tringali S.: On the commutation of generalized means on probability spaces. Indag. Math., 27, 945–953 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maccheroni F., Marinacci M., Rustichini A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica, 74, 1447–1498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Matkowski, Generalized weighted arithmetic means, in: Functional Equations in Mathematical Analysis, T. M. Rassias and J. Brzdȩk (eds.), Springer Optim. Appl. 52, Springer (New York, 2012), pp. 555–573.

  10. Matkowski J.: Lagrangian mean-type mappings for which the arithmetic mean is invariant. J. Math. Anal. Appl., 309, 15–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ritt J.F.: Permutable rational functions. Trans. Amer. Math. Soc., 25, 399–448 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  12. Strzalecki T.: Axiomatic foundations of multiplier preferences. Econometrica, 79, 47–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tringali.

Additional information

P. L. was supported by a PhD scholarship from Università “Luigi Bocconi”.

S. T. was supported by the Austrian Science Fund (FWF), Project No. M 1900-N39.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Głazowska, D., Leonetti, P., Matkowski, J. et al. Commutativity of integral quasi-arithmetic means on measure spaces. Acta Math. Hungar. 153, 350–355 (2017). https://doi.org/10.1007/s10474-017-0734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-017-0734-2

Key words and phrases

Mathematics Subject Classification

Navigation