Skip to main content

Cubes and their centers


We study the relationship between the sizes of sets B, S in \({\mathbb{R}^n}\) where B contains the k-skeleton of an axes-parallel cube around each point in S, generalizing the results of Keleti, Nagy, and Shmerkin [6] about such sets in the plane. We find sharp estimates for the possible packing and box-counting dimensions for B and S. These estimates follow from related cardinality bounds for sets containing the discrete skeleta of cubes around a finite set of a given size. The Katona–Kruskal Theorem from hypergraph theory plays an important role. We also find partial results for the Haussdorff dimension and settle an analogous question for the dual polytope of the cube, the orthoplex.

This is a preview of subscription content, access via your institution.


  1. A. Chang, M. Csörnyei, K. Héra, and T. Keleti, Small unions of affine subspaces and skeletons via Baire category,

  2. Bourgain J.: Averages in the plane over convex curves and maximal operators. J. Analyse Math., 47, 69–85 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  3. K. Falconer, Fractal Geometry, 2nd edition, John Wiley & Sons, Inc. (Hoboken, NJ, 2003).

  4. Frankl P.: A new short proof for the Katona–Kruskal theorem. Discrete Math., 48, 327–329 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  5. G. Katona, A theorem of finite sets, in: Theory of Graphs, Erdős P., Katona G. (eds.), Akadémiai Kiadó (Budapest, 1968), pp. 187–207.

  6. T. Keleti, D. T. Nagy and P. Shmerkin, Squares and their centers, J. Anal. Math. (to appear).

  7. J. B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press (Oakland, CA, 1963), pp. 251–278.

  8. L. Lovász, Combinatorial Problems and Exercises, North-Holland (Amsterdam, 1979).

  9. Marstrand J. M.: Packing circles in the plane. Proc. London Math. Soc., 55, 37–58 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  10. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press (Cambridge, 1995).

  11. D. T. Nagy, private communication.

  12. Robinson J., Sharples N.: Strict inequality in the box-counting dimension product formulas. Real Anal. Exchange, 38, 95–120 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  13. Stein E.: Maximal functions: spherical means. Proc. Natl. Acad. Sci. USA, 73, 2174–2175 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  14. Tricot C.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc., 91, 57–74 (1982)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Thornton.

Additional information

This research was conducted as part of the Budapest Semesters in Mathematics Undergrauate Research Experience Program and was advised by Tamás Keleti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thornton, R. Cubes and their centers. Acta Math. Hungar. 152, 291–313 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words and phrases

  • cube
  • cube skeleton
  • orthoplex
  • Hausdorff dimension
  • box-counting dimension
  • packing dimension

Mathematics Subject Classification

  • primary 05B30
  • 28A78
  • secondary 05D99
  • 52C35