Acta Mathematica Hungarica

, Volume 152, Issue 1, pp 227–242

Sharp constants in asymptotic higher order Markov inequalities

Article

Abstract

The best asymptotic constant for k-th order Markov inequality on a general compact set is determined.

Key words and phrases

Markov inequality asymptotically sharp constant 

Mathematics Subject Classification

26D05 42A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ancona, Sur une conjecture concernant la capacité et l’effilement, in: In théorie du potentiel, Lecture Notes in Mathematics, 1096, Springer-Verlag (Berlin, 1984), pp. 34–68.Google Scholar
  2. 2.
    S. N. Bernstein, On the best approximation of continuos functions by polynomials of given degree (O nailuchshem problizhenii nepreryvnykh funktsii posredstrvom mnogochlenov dannoi stepeni), Sobraniye sochinenii, Vol. I(1912), 11–104, Izd. Akad. Nauk SSSR, Vol. I(1952), Vol. II(1954).Google Scholar
  3. 3.
    R. A. DeVore and G. G. Lorentz, Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303, Springer-Verlag (Berlin, Heidelberg, New York, 1993).Google Scholar
  4. 4.
    Faà di Bruno C. F.: Note sur une nouvelle formule de calcul differentiel. Quarterly J. Pure Appl. Math., 1, 359–360 (1857)Google Scholar
  5. 5.
    G. Freud, Orthogonal Polynomials, Akadémiai Kiadó (Budapest, 1971).Google Scholar
  6. 6.
    Kalmykov S., Nagy B., Totik V.: Asymptotically sharp Markov and Schur inequalities on general sets. Complex Anal. Oper. Theory 9, 1287–1302 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Markov A. A.: Sur une question posée par D. I. Mendeleieff. Izv. Akad. Nauk St. Petersburg, 62, 1–24 (1889)Google Scholar
  8. 8.
    V. A. Markov, On functions of least deviation from zero in a given interval, (1892) (in Russian). Appeared in German with a foreword by Sergei Bernstein as “V. A. Markov, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen", Math. Ann., 77 (1916), 213–258.Google Scholar
  9. 9.
    G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co., Inc. (River Edge, NJ, 1994).Google Scholar
  10. 10.
    T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student Texts, 28, Cambridge University Press (Cambridge, 1995).Google Scholar
  11. 11.
    Riordan J.: An Introduction to Combinatorial Analysis. Wiley, New York (1958)MATHGoogle Scholar
  12. 12.
    E. B. Staff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer-Verlag (Berlin, 1997).Google Scholar
  13. 13.
    Totik V.: Polynomial inverse images and polynomial inequalities. Acta Math. 187, 139–160 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    V. Totik, The polynomial inverse image method, in: Approximation Theory XIII (San Antonio, 2010), M. Neamtu, L. Schumaker (Eds.), Springer Proceedings in Mathematics, 13, Springer (2012), pp. 345–367.Google Scholar
  15. 15.
    Tsuji M.: Potential Theory in Modern Function Theory. Maruzen, Tokyo (1959)MATHGoogle Scholar
  16. 16.
    J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, third edition, Amer. Math. Soc. Coll. Publ., XX, Amer. Math. Soc. (Providence, RI, 1960).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.MTA-SZTE Analysis and Stochastics Research GroupBolyai Institute, University of SzegedSzegedHungary
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaU.S.A.

Personalised recommendations