Skip to main content
Log in

Approximate convexity with respect to a subfield

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \({\mathbb{F}}\) be a subfield of \({\mathbb{R}}\) and X be a linear space over \({\mathbb{F}}\). Let \({ D\subseteq X }\) be a nonempty \({\mathbb{F}}\)-convex set, \({ D^*:=D-D:=\{x-y : x,y\in D\} }\), and \({\alpha \colon {D^* \rightarrow \mathbb{R}}}\) be a nonnegative even function. The function \({ f \colon {D\rightarrow \mathbb{R}}}\) is called \({(\alpha,\mathbb{F})}\)-convex, if it satisfies the inequality

$$\begin{aligned}{f(tx+(1-t)y)\leq tf(x)+(1-t)f(y) + t\alpha((1-t)(x-y))+(1-t)\alpha(t(y-x))}\end{aligned}$$

for all \({x,y\in D}\) and for all \({t\in \mathbb{F}\cap [0,1]}\). In this paper we characterize \({(\alpha,\mathbb{F})}\)-convex functions by comparison of modified difference ratios and support properties. If \({\alpha}\) satisfies some additional conditions, we obtain the differentiability of \({(\alpha,\mathbb{F})}\)-convex functions in the appropriate sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein F., Doetsch G.: Zur Theorie der konvexen Funktionen. Math. Ann. 76, 514–526 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boros Z., Páles Zs.: \({\mathbb{Q}}\)-subdifferential of Jensen-convex functions. J. Math. Anal. Appl. 321, 99–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Green J. W.: Approximately convex functions. Duke Math. J. 19, 499–504 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  4. Házy A., Páles Zs.: On approximately midconvex functions. Bull. London Math. Soc. 36, 339–350 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hyers D. H., Ulam S. M.: Approximately convex functions. Proc. Amer. Math. Soc. 3, 821–828 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jensen J. L. W. V.: Sur les fonctions convexes et les inégualités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  7. Makó J., Nikodem K., Páles Zs.: On strong \({(\alpha,\mathbb{F})}\)-convexity. Math. Inequal. Appl. 15, 289–299 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Makó J., Páles Zs.: On \({\phi}\)-convexity. Publ. Math. Debrecen 80, 107–126 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Merentes N., Nikodem K.: Remarks on strongly convex functions. Aequationes Math. 80, 193–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ng C. T., Nikodem K.: On approximately convex functions. Proc. Amer. Math. Soc. 118, 103–108 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Páles Zs.: On approximately convex functions. Proc. Amer. Math. Soc. 131, 243–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press (New York–London, 1973).

  13. Rockafellar R.T.: Convex analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  14. Rolewicz S.: On \({\alpha (\cdot) }\)-paraconvex and strongly \({\alpha (\cdot) }\)-paraconvex multifunctions. Control Cybernet. 29, 367–377 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Rolewicz S.: Paraconvex analysis. Control Cybernet. 34, 951–965 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Tabor Ja., Tabor Jó.: Generalized approximate midconvexity. Control Cybernet. 38, 656–669 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Tabor Ja., Tabor Jó.: Takagi functions and approximate midconvexity. J. Math. Anal. Appl. 356, 729–737 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tabor Ja., Tabor Jó.,  Zołdak M.: Optimality estimations for approximately midconvex functions. Aequationes Math. 80, 227–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Boros.

Additional information

This research was (partially) carried out in the framework of the Center of Excellence of Mechatronics and Logistics at the University of Miskolc.

Research of Z. Boros has been supported by the Hungarian Scientific Research Fund (OTKA) grant K-111651.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boros, Z., Nagy, N. Approximate convexity with respect to a subfield. Acta Math. Hungar. 152, 464–472 (2017). https://doi.org/10.1007/s10474-017-0701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-017-0701-y

Key words and phrases

Mathematics Subject Classification

Navigation