Abstract
Let \({\mathbb{F}}\) be a subfield of \({\mathbb{R}}\) and X be a linear space over \({\mathbb{F}}\). Let \({ D\subseteq X }\) be a nonempty \({\mathbb{F}}\)-convex set, \({ D^*:=D-D:=\{x-y : x,y\in D\} }\), and \({\alpha \colon {D^* \rightarrow \mathbb{R}}}\) be a nonnegative even function. The function \({ f \colon {D\rightarrow \mathbb{R}}}\) is called \({(\alpha,\mathbb{F})}\)-convex, if it satisfies the inequality
for all \({x,y\in D}\) and for all \({t\in \mathbb{F}\cap [0,1]}\). In this paper we characterize \({(\alpha,\mathbb{F})}\)-convex functions by comparison of modified difference ratios and support properties. If \({\alpha}\) satisfies some additional conditions, we obtain the differentiability of \({(\alpha,\mathbb{F})}\)-convex functions in the appropriate sense.
Similar content being viewed by others
References
Bernstein F., Doetsch G.: Zur Theorie der konvexen Funktionen. Math. Ann. 76, 514–526 (1915)
Boros Z., Páles Zs.: \({\mathbb{Q}}\)-subdifferential of Jensen-convex functions. J. Math. Anal. Appl. 321, 99–113 (2006)
Green J. W.: Approximately convex functions. Duke Math. J. 19, 499–504 (1952)
Házy A., Páles Zs.: On approximately midconvex functions. Bull. London Math. Soc. 36, 339–350 (2004)
Hyers D. H., Ulam S. M.: Approximately convex functions. Proc. Amer. Math. Soc. 3, 821–828 (1952)
Jensen J. L. W. V.: Sur les fonctions convexes et les inégualités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)
Makó J., Nikodem K., Páles Zs.: On strong \({(\alpha,\mathbb{F})}\)-convexity. Math. Inequal. Appl. 15, 289–299 (2012)
Makó J., Páles Zs.: On \({\phi}\)-convexity. Publ. Math. Debrecen 80, 107–126 (2012)
Merentes N., Nikodem K.: Remarks on strongly convex functions. Aequationes Math. 80, 193–199 (2010)
Ng C. T., Nikodem K.: On approximately convex functions. Proc. Amer. Math. Soc. 118, 103–108 (1993)
Páles Zs.: On approximately convex functions. Proc. Amer. Math. Soc. 131, 243–252 (2003)
A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press (New York–London, 1973).
Rockafellar R.T.: Convex analysis. Princeton University Press, Princeton (1970)
Rolewicz S.: On \({\alpha (\cdot) }\)-paraconvex and strongly \({\alpha (\cdot) }\)-paraconvex multifunctions. Control Cybernet. 29, 367–377 (2000)
Rolewicz S.: Paraconvex analysis. Control Cybernet. 34, 951–965 (2005)
Tabor Ja., Tabor Jó.: Generalized approximate midconvexity. Control Cybernet. 38, 656–669 (2009)
Tabor Ja., Tabor Jó.: Takagi functions and approximate midconvexity. J. Math. Anal. Appl. 356, 729–737 (2009)
Tabor Ja., Tabor Jó., Zołdak M.: Optimality estimations for approximately midconvex functions. Aequationes Math. 80, 227–237 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was (partially) carried out in the framework of the Center of Excellence of Mechatronics and Logistics at the University of Miskolc.
Research of Z. Boros has been supported by the Hungarian Scientific Research Fund (OTKA) grant K-111651.
Rights and permissions
About this article
Cite this article
Boros, Z., Nagy, N. Approximate convexity with respect to a subfield. Acta Math. Hungar. 152, 464–472 (2017). https://doi.org/10.1007/s10474-017-0701-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-017-0701-y