Acta Mathematica Hungarica

, Volume 152, Issue 1, pp 140–149

Polynomial entropy and expansivity



We study the polynomial entropy of homeomorphisms on compact metric spaces. We construct a homeomorphism on a compact metric space with vanishing polynomial entropy that it is not equicontinuous. Also we give examples with arbitrarily small polynomial entropy. Finally, we show that expansive homeomorphisms and positively expansive maps of compact metric spaces with infinitely many points have polynomial entropy greater than or equal to 1.

Key words and phrases

topological entropy polynomial entropy expansivity 

Mathematics Subject Classification

primary 37B40 28D20 37A35 secondary 37B10 37B45 54H20 37C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alves J.F., Carvalho M., Vásquez C.H.: A variational principle for impulsive semiflows. J. Diff. Equ., 259, 4229–4252 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Amigó J.M., Keller K., Unakafova V.A.: On entropy, entropy-like quantities, and applications. Discrete Contin. Dyn. Syst. Ser. B, 20, 3301–3343 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blanchard F., Host B., Mass A.: Topological complexity. Ergodic Theory Dynam. Systems, 20, 641–662 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bowen R.: Entropy-expansive maps. Trans. Amer. Math. Soc., 164, 223–331 (1972)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press (2002).Google Scholar
  6. 6.
    Cassaigne J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc., 4, 67–88 (1997)MathSciNetMATHGoogle Scholar
  7. 7.
    J. Cassaigne, Constructing infinite words of intermediate complexity, in: Developments in Language Theory, Lecture Notes in Computer Science 2450, Springer (Berlin, 2002), pp. 173–184.Google Scholar
  8. 8.
    Fathi A.: Expansiveness, hyperbolicity and Hausdorff dimension. Comm. Math. Phys., 126, 249–262 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ferenczi S.: Complexity of sequences and dynamical systems. Discrete Math., 206, 145–154 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1995).Google Scholar
  11. 11.
    Hedlund G., Morse M.: Symbolic dynamics. Amer. J. Math., 60, 815–866 (1938)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kato H.: Continuum-wise expansive homeomorphisms. Canad. J. Math., 45, 576–598 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Labrousse C.: Polynomial growth of the volume of balls for zero-entropy geodesic systems. Nonlinearity, 25, 3049–3069 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Labrousse C.: Flat metrics are strict local minimizers for the polynomial entropy. Regul. Chaotic Dyn., 17, 479–491 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    C. Labrousse, Polynomial entropy for the circle homeomorphisms and for \({C^1}\) nonvanishing vector fields on \({T^2}\), arXiv:math/1311.0213.
  16. 16.
    Labrousse C., Marco J-P.: Polynomial entropies for Bott integrable Hamiltonian systems. Regul. Chaotic Dyn., 19, 374–414 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mañé R.: Expansive homeomorphisms and topological dimension. Trans. Amer. Math. Soc., 252, 313–319 (1979)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Marco J-P.: Polynomial entropies and integrable Hamiltonian systems. Regul. Chaotic Dyn., 18, 623–655 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Morales C.A.: On the complexity of expansive measures. Acta Math. Sinica, English Series, 31, 1501–1507 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer-Verlag (New York–Berlin, 1982).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • A. Artigue
    • 1
  • D. Carrasco-Olivera
    • 2
  • I. Monteverde
    • 1
  1. 1.Departamento de Matemática y Estadística del LitoralUniversidad de la RepúblicaSaltoUruguay
  2. 2.Grupo de Investigación en Sistemas Dinámicos y Aplicaciones, Departamento de MatemáticaFacultad de Ciencias, Universidad del Bío BíoConcepciónChile

Personalised recommendations