Acta Mathematica Hungarica

, Volume 151, Issue 1, pp 24–34 | Cite as

Gromov hyperbolicity and convex tessellation graph

Article

Abstract

In [7] the following conjecture is stated: every tessellation of the Euclidean plane with convex tiles induces a non-hyperbolic graph. It is natural to think that this statement holds since the Euclidean plane is non-hyperbolic. Furthermore, there are several results supporting this conjecture. However, this work shows that the conjecture is false.

Mathematics Subject Classification

05C10 05C63 05C99 

Key words and phrases

hyperbolic graph tessellation graph geodesics periodic graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Alonso, T. Brady, D. Cooper, T. Delzant, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro and H. Short, Notes on word hyperbolic groups, in: Group Theory from a Geometrical Viewpoint (Trieste, 1990), (ed. E. Ghys, A. Haefliger and A. Verjovsky), World Sci. Publ. (River Edge, NJ, 1991), pp. 3–63.Google Scholar
  2. 2.
    Bermudo S., Rodríguez J.M., Sigarreta J.M., Vilaire J.-M.: Gromov hyperbolic graphs. Discrete Math., 313, 1575–1585 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B.H. Bowditch, Notes on Gromov’s hyperbolicity criterion for path-metric spaces, in: Group Theory from a Geometrical Viewpoint (Trieste, 1990), (ed. E. Ghys, A. Haefliger and A. Verjovsky), World Sci. Publ. (River Edge, NJ, 1991), pp. 64–167.Google Scholar
  4. 4.
    Cantón A., Granados A., Pestana D., Rodríguez J.M.: Gromov hyperbolicity of periodic planar graphs. Acta Math. Sin., 30, 79–90 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cantón A., Granados A., Pestana D., Rodríguez J.M.: Gromov hyperbolicity of planar graphs. Cent. Eur. J. Math. 11, 1817–1830 (2013)MathSciNetMATHGoogle Scholar
  6. 6.
    Cantón A., Granados A., Pestana D., Rodríguez J.M.: Gromov hyperbolicity of periodic graphs. Bull. Malays. Math. Sci. Soc., 39, 89–116 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Carballosa W., Portilla A., Rodríguez J.M. Sigarreta J.M.: Planarity and hyperbolicity in graphs. Graph Combinator., 31, 1311–1324 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    V. Chepoi and B. Estellon, Packing and covering δ-hyperbolic spaces by balls, APPROX-RANDOM 2007, pp. 59–73.Google Scholar
  9. 9.
    D. Eppstein, Squarepants in a tree: sum of subtree clustering and hyperbolic pants decomposition, in: SODA’2007, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, ACM (New York, 2007), pp. 29-38.Google Scholar
  10. 10.
    E. Ghys and P. de la Harpe, Sur les Groupes Hyperboliques d’après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser, Boston Inc. (Boston, MA, 1990).Google Scholar
  11. 11.
    M. Gromov, Hyperbolic groups, in: Essays in Group Theory, Edited by S. M. Gersten, M. S. R. I. Publ. 8, Springer (New York, 1987), pp. 75–263.Google Scholar
  12. 12.
    E. A. Jonckheere, Contrôle du traffic sur les réseaux à géométrie hyperbolique–Vers une théorie géométrique de la sécurité l’acheminement de l’information, J. Europ. Syst. Autom., 8 (2002), 45–60.Google Scholar
  13. 13.
    D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat and M. Boguñá, Hyperbolic geometry of complex networks, Physical Review E, 82 (2010), 036106, 18 pp.Google Scholar
  14. 14.
    K. Oshika, Discrete Groups, AMS Bookstore (2002).Google Scholar
  15. 15.
    A. Portilla, J. M. Rodríguez, J. M. Sigarreta and J.-M. Vilaire, Gromov hyperbolic tessellation graphs, Utilitas Math. (to appear).Google Scholar
  16. 16.
    Y. Shavitt and T. Tankel, On internet embedding in hyperbolic spaces for overlay construction and distance estimation, INFOCOM (2004).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsFlorida International UniversityMiamiU.S.A.
  2. 2.Department of MathematicsMiami Dade CollegeMiamiU.S.A.

Personalised recommendations