Advertisement

Acta Mathematica Hungarica

, Volume 150, Issue 2, pp 524–540 | Cite as

Computing rotation and self-linking numbers in contact surgery diagrams

  • S. Durst
  • M. KegelEmail author
Article

Abstract

We give an explicit formula to compute the rotation number of a nullhomologous Legendrian knot in contact (1/n)-surgery diagrams along Legendrian links and obtain a corresponding result for the self-linking number of transverse knots. Moreover, we extend the formula by Ding–Geiges–Stipsicz for computing the d 3-invariant to (1/n)-surgeries.

Key words and phrases

rotation number Legendrian knot transverse knot contact surgery diagram 

Mathematics Subject Classification

primary 57R17 secondary 57M27 57R65 57M25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Baker and J. Etnyre, Rational linking and contact geometry, in Perspectives in Analysis, Geometry, and Topology, Progr. Math., 296 Birkhäuser Verlag (Basel, 2012), pp. 19–37.Google Scholar
  2. 2.
    Baker K., Grigsby J.: Grid diagrams and Legendrian lens space links. J. Symplectic Geom. 7, 415–448 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. Conway, Transverse surgery on knots in contact 3-manifolds, arXiv:1409.7077.
  4. 4.
    Ding F., Geiges H.: A Legendrian surgery presentation of contact 3-manifolds. Math. Proc. Cambridge Philos. Soc. 136, 583–598 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    F. Ding and H. Geiges, Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol., 1 (2001), 153–172 (electronic).Google Scholar
  6. 6.
    Ding F., Geiges H., Stipsicz A.: Surgery diagrams for contact 3-manifolds. Turkish J. Math. 28, 41–74 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    S. Durst, M. Kegel and M. Klukas, Computing the Thurston–Bennequin invariant in open books, Acta Math. Hungar., to appear.Google Scholar
  8. 8.
    J. Etnyre, Legendrian and transversal knots, in Handbook of knot theory, Elsevier B.V. (Amsterdam, 2005), pp. 105–185.Google Scholar
  9. 9.
    H. Geiges, An Introduction to Contact Topology, Cambridge University Press (Cambridge, 2008).Google Scholar
  10. 10.
    Geiges H., Onaran S.: Legendrian rational unknots in lens spaces. J. Symplectic Geom. 13, 17–50 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gompf R.E.: Handlebody construction of Stein surfaces. Ann. of Math. (2(148), 619–693 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. E. Gompf and A. Stipsicz, 4-Manifolds and Kirby Calculus, American Mathematical Society (Providence, 1999).Google Scholar
  13. 13.
    M. Kegel, The Legendrian knot complement problem, arXiv:1604.05196.
  14. 14.
    Lisca P., Ozsváth P., Stipsicz A., Szabó Z.: Heegaard Floer invariants of Legendrian knots in contact three-manifolds. J. Eur. Math. Soc. (JEMS) 11, 1307–1363 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P. Ozsváth, A. Stipsicz and and Z. Szabó, Grid Homology for Knots and Links, Mathematical Surveys and Monographs, American Mathematical Society (Providence, 2015).Google Scholar
  16. 16.
    D. Rolfsen, Knots and Links, AMS Chelsea Pub. (Providence, 2003).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations