Abstract
We prove a generalization of the discrete version of the Principal Ideal Theorem.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Malgrange B.: Equations aux dérivées partielles à coefficients constants. II. Equations avec second membre. C.R. Acad. Sci. Paris 238, 196–198 (1954)
Ehrenpreis L.: Mean periodic functions. I. Varieties whose annihilator ideals are principal. Amer. J. Math. 77, 293–328 (1955)
Lefranc M.: Analyse spectrale sur \({Z_{n}}\). C.R. Acad. Sci. Paris 246, 1951–1953 (1958)
Elliott R. J.: Some results in spectral synthesis. Proc. Cambridge Phil. Soc. 61, 395–424 (1965)
Elliott R. J.: Two notes on spectral synthesis for discrete Abelian groups. Proc. Cambridge Phil. Soc. 61, 617–620 (1965)
Gurevič D. I.: Counterexamples to a problem of L. Schwartz. Funkcional. Anal. i Priložen. 9, 29–35 (1975)
L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific Publishing Co. Inc. (Teaneck, NJ, 1991).
Székelyhidi L.: On the extension of exponential polynomials. Math. Bohemica 125, 365–370 (2000)
Székelyhidi L.: The failure of spectral synthesis on some types of discrete abelian groups. J. Math. Anal. Appl. 291, 757–763 (2004)
L. Székelyhidi, Discrete Spectral Synthesis and its Applications, Springer (Dordrecht, 2006).
Laczkovich M., Székelyhidi L.: Spectral synthesis on discrete abelian groups, Math. Proc. Cambridge Phil. Soc. 143, 103–120 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. K111651.
Rights and permissions
About this article
Cite this article
Székelyhidi, L. On the principal ideal theorem and spectral synthesis on discrete Abelian groups. Acta Math. Hungar. 150, 228–233 (2016). https://doi.org/10.1007/s10474-016-0626-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-016-0626-x