Alzer H., Berg C.: Some classes of completely monotonic functions, II. Ramanujan J. 11, 225–248 (2006)
MathSciNet
Article
MATH
Google Scholar
Anderson G. D., Vamanamurthy M. K., Vuorinen M.: Inequalities for quasiconformal mappings in space. Pacific J. Math. 160, 1–18 (1993)
MathSciNet
Article
MATH
Google Scholar
Baricz Á.: Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expo. Math. 26, 279–293 (2008)
MathSciNet
Article
MATH
Google Scholar
Baricz Á.: Turán type inequalities for modified Bessel functions. Bull. Aust. Math. Soc. 82, 254–264 (2010)
MathSciNet
Article
MATH
Google Scholar
Baricz Á.: Bounds for modified Bessel functions of the first and second kinds. Proc. Edinb. Math. Soc. 53, 575–599 (2010)
MathSciNet
Article
MATH
Google Scholar
Baricz Á., Pogány T. K.: On a sum of modified Bessel functions. Mediterr. J. Math. 11, 349–360 (2014)
MathSciNet
Article
MATH
Google Scholar
Á. Baricz, T. K. Pogány and R. Szász, Monotonicity properties of some Dini functions, Proceedings of the 9th IEEE International Symposium on Applied Computational Intelligence and Informatics, May 15–17 (Timişoara, Romania, 2014) pp. 323–326.
Á. Baricz, S. Ponnusamy and S. Singh, Turán type inequalities for Struve functions, Proc. Amer. Math. Soc. (submitted).
Baricz Á., Szász R.: The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. 12, 485–509 (2014)
MathSciNet
Article
MATH
Google Scholar
Baricz Á., Wu S.: Sharp exponential Redheffer-type inequalities for Bessel functions. Publ. Math. Debrecen 74, 257–278 (2009)
MathSciNet
MATH
Google Scholar
Biernacki M., Krzyż J.: On the monotonity of certain functionals in the theory of analytic function. Ann. Univ. Mariae Curie-Skłodowska Sect. A. 9, 135–147 (1957)
MATH
Google Scholar
W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, John Wiley (New York, 1966).
Ismail M. E. H., Kelker D. H.: Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal. 10, 884–901 (1979)
MathSciNet
Article
MATH
Google Scholar
Ismail M. E. H., Muldoon M. E.: Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2, 1–21 (1995)
MathSciNet
MATH
Google Scholar
Joshi C. M., Bissu S. K.: Inequalities for some special functions. J. Comput. Appl. Math. 69, 251–259 (1996)
MathSciNet
Article
MATH
Google Scholar
Kalmykov S. I., Karp D. B.: Log-concavity for series in reciprocal gamma functions and applications. Integral Transforms Spec. Funct. 24, 859–872 (2013)
MathSciNet
Article
MATH
Google Scholar
Karp D. B., Sitnik S. M.: Log-convexity and log-concavity of hypergeometric-like functions. J. Math. Anal. Appl. 364, 384–394 (2010)
MathSciNet
Article
MATH
Google Scholar
Kimberling C. H.: A probabilistic interpretation of complete monotonicity. Aequationes Math. 10, 152–164 (1974)
MathSciNet
Article
MATH
Google Scholar
Landau L. J.: Ratios of Bessel functions and roots of \({\alpha J_{\nu}(x)+xJ'_{\nu}(x)=0}\). J. Math. Anal. Appl. 240, 174–204 (1999)
MathSciNet
Article
Google Scholar
Luke Y. L.: Inequalities for generalized hypergeometric functions. J. Approx. Theory 5, 41–65 (1972)
MathSciNet
Article
MATH
Google Scholar
F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press (Cambridge, 2010).
Ponnusamy S., Vuorinen M.: Asymptotic expansions and inequalities for hypergeometric functions. Mathematika 44, 278–301 (1997)
MathSciNet
Article
MATH
Google Scholar
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press (Cambridge, 1922).
D. V. Widder, The Laplace Transform, Princeton Univ. Press (Princeton, 1941).