Skip to main content
Log in

Extension of a parametric family of Diophantine triples in Gaussian integers

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We prove that if \({\{k, 4k + 4, 9k + 6, d\}}\), where \({k \in \mathbb{Z}[i]}\), \({k \neq 0, -1}\), is a Diophantine quadruple in the ring of Gaussian integers, then

$$d = 144k^3 + 240k^2 + 124k + 20.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu Muriefah F. S., Al- Rashed A.: Some Diophantine quadruples in the ring \({\mathbb{Z}[\sqrt{-2}]}\). Math Commun. 9, 1–8 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Baker A., Davenport H.: The equations \({3x^2 - 2 = y^2}\) and \({8x^2 - 7 = z^2}\). Quart J. Math. Oxford Ser. 20(2), 129–137 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker A., Wüstholz G.: Logarithmic forms and group varieties. J. Reine Angew. Math. 442, 19–62 (1993)

    MathSciNet  MATH  Google Scholar 

  4. M. Cipu and T. Trudgian, Searching for Diophantine quintuples, preprint.

  5. C. Elsholtz, A. Filipin and Y. Fujita, On Diophantine quintuples and \({D(-1)}\)-quadruples, Monatsh. Math., 175 (2014), 227–239.

  6. Dujella A.: A proof of the Hoggatt–Bergum conjecture. Proc. Amer. Math. Soc. 127, 1999–2005 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dujella A.: An absolute bound for the size of Diophantine m-tuples. J. Number Theory, 89, 126–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dujella A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)

    MathSciNet  MATH  Google Scholar 

  9. A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational Diophantine sextuples, preprint.

  10. Z. Franušić, Diophantine quadruples in the ring \({\mathbb{Z}[\sqrt{2}]}\), Math. Commun., 9 (2004), 141–148.

  11. Z. Franušić, On the extensibility of Diophantine triples \({\{k -1, k + 1, 4k\}}\) for Gaussian integers, Glas. Mat. Ser. III, 43 (2008), 265–291.

  12. Z. Franušić, Diophantine quadruples in the ring of integers of \({\mathbb{Q}(\sqrt{2})}\), Miskolc Math. Notes, 14 (2013), 893–903.

  13. Gibbs P.: Some rational Diophantine sextuples. Glas. Mat. Ser. III, 41, 195–203 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jadrijević B., Ziegler V.: A system of relative Pellian equations and related family of relative Thue equations, Int. J. Number Theory, 2, 569–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Soldo, On the existence of Diophantine quadruples in \({\mathbb{Z}[\sqrt{-2}]}\), Miskolc Math. Notes, 14 (2013), 265–277.

  16. I. Soldo, On the extensibility of \({D(-1)}\)-triples \({\{1, b, c\}}\) in the ring \({\mathbb{Z}[\sqrt{-t}]}\), \({t > 0}\), Studia Sci. Math. Hungar., 50 (2013), 296–330.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Togbé.

Additional information

The second author was supported by Croatian Science Foundation under the project no. 6422.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayad, A., Filipin, A. & Togbé, A. Extension of a parametric family of Diophantine triples in Gaussian integers. Acta Math. Hungar. 148, 312–327 (2016). https://doi.org/10.1007/s10474-016-0581-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-016-0581-6

Key words and phrases

Mathematics Subject Classification

Navigation