Abstract
We prove that if \({\{k, 4k + 4, 9k + 6, d\}}\), where \({k \in \mathbb{Z}[i]}\), \({k \neq 0, -1}\), is a Diophantine quadruple in the ring of Gaussian integers, then
Similar content being viewed by others
References
Abu Muriefah F. S., Al- Rashed A.: Some Diophantine quadruples in the ring \({\mathbb{Z}[\sqrt{-2}]}\). Math Commun. 9, 1–8 (2004)
Baker A., Davenport H.: The equations \({3x^2 - 2 = y^2}\) and \({8x^2 - 7 = z^2}\). Quart J. Math. Oxford Ser. 20(2), 129–137 (1969)
Baker A., Wüstholz G.: Logarithmic forms and group varieties. J. Reine Angew. Math. 442, 19–62 (1993)
M. Cipu and T. Trudgian, Searching for Diophantine quintuples, preprint.
C. Elsholtz, A. Filipin and Y. Fujita, On Diophantine quintuples and \({D(-1)}\)-quadruples, Monatsh. Math., 175 (2014), 227–239.
Dujella A.: A proof of the Hoggatt–Bergum conjecture. Proc. Amer. Math. Soc. 127, 1999–2005 (1999)
Dujella A.: An absolute bound for the size of Diophantine m-tuples. J. Number Theory, 89, 126–150 (2001)
Dujella A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)
A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational Diophantine sextuples, preprint.
Z. Franušić, Diophantine quadruples in the ring \({\mathbb{Z}[\sqrt{2}]}\), Math. Commun., 9 (2004), 141–148.
Z. Franušić, On the extensibility of Diophantine triples \({\{k -1, k + 1, 4k\}}\) for Gaussian integers, Glas. Mat. Ser. III, 43 (2008), 265–291.
Z. Franušić, Diophantine quadruples in the ring of integers of \({\mathbb{Q}(\sqrt{2})}\), Miskolc Math. Notes, 14 (2013), 893–903.
Gibbs P.: Some rational Diophantine sextuples. Glas. Mat. Ser. III, 41, 195–203 (2006)
Jadrijević B., Ziegler V.: A system of relative Pellian equations and related family of relative Thue equations, Int. J. Number Theory, 2, 569–590 (2006)
I. Soldo, On the existence of Diophantine quadruples in \({\mathbb{Z}[\sqrt{-2}]}\), Miskolc Math. Notes, 14 (2013), 265–277.
I. Soldo, On the extensibility of \({D(-1)}\)-triples \({\{1, b, c\}}\) in the ring \({\mathbb{Z}[\sqrt{-t}]}\), \({t > 0}\), Studia Sci. Math. Hungar., 50 (2013), 296–330.
Author information
Authors and Affiliations
Corresponding author
Additional information
The second author was supported by Croatian Science Foundation under the project no. 6422.
Rights and permissions
About this article
Cite this article
Bayad, A., Filipin, A. & Togbé, A. Extension of a parametric family of Diophantine triples in Gaussian integers. Acta Math. Hungar. 148, 312–327 (2016). https://doi.org/10.1007/s10474-016-0581-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-016-0581-6