Abstract
We prove a theorem of Riesz characterizing the convergence in spaces of functions N ɸ generated by concave functions ɸ.
This is a preview of subscription content, access via your institution.
References
Bang H. H., Cong N. M.: Generalizations of the Riesz convergence theorem for Lorentz spaces, Acta Math. Hungar., 106, 331–341 (2005)
P. R. Halmos, Measure Theory, Springer-Verlag, (New York, 1974).
Lorentz G. G.: Some new function spaces, Ann. Math., 51, 37–55 (1950)
Lorentz G. G.: Relations between function spaces, Proc. Amer. Math. Soc., 12, 127–132 (1961)
O’Neil R.: Convolution operators and L(p, q) spaces, Duke Math. J., 30, 120–142 (1963)
M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., (New York, 1995).
F. Riesz, Sur la convergence en moyenne, Acta Sci. Math. (Szeged), 4 (1928), 58-64 and 182-185.
Sargent W. L. C.: Some sequence spaces related to the l p spaces, J. London Math. Soc., 35, 161–171 (1960)
Sargent W. L. C.: Some analogues and extensions of Marcinkiewicz’s interpolation theorem, Proc. London Math. Soc., 11, 457–468 (1961)
Steigerwalt M. S., White A. J.: Some function spaces related to L p , Proc. London. Math. Soc., 22, 137–163 (1971)
M. S. Steigerwalt, Some Banach Function Spaces Related to Orlicz Spaces, Thesis, University of Aberdeen (1967).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bang, H.H. On a Theorem of F. Riesz. Acta Math. Hungar. 148, 360–369 (2016). https://doi.org/10.1007/s10474-015-0574-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-015-0574-x
Keywords and phrases
- measure
- Orlicz space
- Lorentz space
Mathematics Subject Classification
- 46F99
- 46E30