Skip to main content
Log in

Ergodic properties of nonhomogeneous Markov chains defined on ordered Banach spaces with a base

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

It is known that the Dobrushin’s ergodicity coefficient is one of the effective tools to study the behavior of non-homogeneous Markov chains. In the present paper, we define such an ergodicity coefficient of a positive mapping defined on ordered Banach spaces with a base (OBSB), and study its properties. In terms of this coefficient we prove the equivalence uniform and weak ergodicities of homogeneous Markov chains. This extends earlier results obtained in case of von Neumann algebras. Such a result allows to establish a category theorem for uniformly ergodic Markov operators. We find necessary and sufficient conditions for the weak ergodicity of nonhomogeneous discrete Markov chains (NDMC). L-weak ergodicity of NDMC defined on OBSB is also studied. We establish that the chain satisfies L-weak ergodicity if and only if it satisfies a modified Doeblin’s condition (\({\mathfrak{D}_1}\) -condition). Moreover, some connections between L-weak ergodicity and L-strong ergodicity have been established. Several nontrivial examples of NDMC which satisfy the \({\mathfrak{D}_1}\)-condition are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S., Høegh-Krohn R.: Frobenius theory for positive maps of von Neumann algebras. Comm. Math. Phys. 64, 83–94 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Springer-Verlag (Berlin, 1971).

  3. Ayupov Sh., Sarymsakov T. A.: On homogeneous Markov chains on semifields. Theor. Probab. Appl. 26, 510–520 (1982)

    Article  MATH  Google Scholar 

  4. Bartoszek W.: Norm residuality of ergodic operators. Bull. Acad. Polon. Sci. Math. 29, 165–167 (1981)

    MATH  MathSciNet  Google Scholar 

  5. Bartoszek W.: Asymptotic properties of iterates of stochastic operators on (AL) Banach lattices. Anal. Polon. Math. 52, 165–173 (1990)

    MATH  MathSciNet  Google Scholar 

  6. Bartoszek W., Kuna B.: Strong mixing Markov semigroups on \({{\mathcal C}_1}\) are meager. Colloq. Math. 105, 311–317 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartoszek W., Kuna B.: On residualities in the set of Markov operators on \({\mathcal{C}_1}\). Proc. Amer. Math. Soc. 133, 2119–2129 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bartoszek W., Pulka M.: On mixing in the class of quadratic stochastic operators. Nonlin. Anal.: Theor. Methods. 86, 95–113 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berdikulov M.: Markov processes on order-unit spaces. Theory Probab. Appl. 53, 136–144 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen J. E., Iwasa Y., Rautu G., Ruskai M. B., Seneta E., Zbaganu G.: Relative entropy under mappings by stochastic matrices. Linear Algebra Appl. 179, 211–235 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Coppersmith D., Wu C-W.: Conditions for weak ergodicity of nonhomogeneous Makov chains. Statis. Probab. Lett. 78, 3082–3085 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dobrushin R. L.: Central limit theorem for nonstationary Markov chains. I, II, Theor. Probab. Appl. 1(65–80), 329–383 (1956)

    Article  Google Scholar 

  13. Dorea C. C. Y., Pereira A. G. C.: A note on a variation of Doeblin’s condition for uniform ergodicity of Markov chains. Acta Math. Hungar. 110, 287–292 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dorogovtsev A. A.: Measure-valued Markov processes and stochastic flows on abstract spaces. Stochas. Stochastics Rep. 76, 395–407 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yu E., Emel’yanov, Wolff M.P.H.: Positive operators on Banach spaces ordered by strongly normal cones. Positivity. 7, 3–22 (2003)

    Article  MathSciNet  Google Scholar 

  16. Fagnola F., Rebolledo R.: On the existance of stationary states for quantum dyanamical semigroups. Jour. Math. Phys. 42, 1296–1308 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fagnola F., Rebolledo R.: Transience and recurrence of quantum Markov semigroups. Probab. Theory Relat. Fields. 126, 289–306 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gaubert S., Qu Z.: Dobrushin’s ergodicity coefficient for Markov operators on cones and beyond, Integ. Eqs. Operator Theor. 81, 127–150 (2014)

    Article  MathSciNet  Google Scholar 

  19. Hajnal J.: Weak ergodicity in nonhomegeneous Markov chains. Proc. Cambridge Philos. Soc. 54, 233–246 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. R. Halmos, Lectures on Ergodic Theory, Chelsea (New York, 1960).

  21. Ipsen I.C.F., Salee T.M.: Ergodicity coefficients defined by vector norms. SIAM J. Matrix Anal. Appl. 32, 153–200 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Iwanik A.: Approximation theorems for stochastic operators. Indiana Univ. Math. J. 29, 415–425 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Jajte, Strong Linit Theorems in Non-commutative Probability, Lec. Notes Math., 1110, Springer (Berlin–Heidelberg, 1984).

  24. Johnson J., Isaacson D.: Conditions for strong ergodicity using intensity matrices. J. Appl. Probab. 25, 34–42 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kartashov N., Golomozyi V.: Maximal coulpling procedure and stability of discrete Markov chains I. Theory of Probab. & Math. Statis. 86, 93–104 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kastoryano M. J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54, 052202 (2013)

    Article  MathSciNet  Google Scholar 

  27. Kirkland S.: The minimum coefficient of ergodicity for a Markov chain with a given directed graph. Linear Alg. Appl. 447, 139–154 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kolmogorov A. N.: On analytical methods in probability theory. Uspekhi Mat. Nauk. 5, 5–51 (1938)

    MathSciNet  Google Scholar 

  29. U. Krengel, Ergodic Theorems, Walter de Gruyter (Berlin–New York, 1985).

  30. Labuschagne L. E., Majewski W. A.: Maps on noncommutative Orlicz spaces. Illinois J. Math. 55, 1053–1081 (2011)

    MATH  MathSciNet  Google Scholar 

  31. Łuczak A.: Quantum dynamical semigroups in strongly finite von Neumann algebras. Acta Math. Hungar. 92, 11–17 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Madsen R. W., Isaacson D. L.: Strongly ergodic behavior for non-stationary Markov processes. Ann. Probab. 1, 329–335 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  33. S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Springer, Verlag (Berlin, 1994).

  34. Mitrophanov A.: Sensitivty and convergence of uniform ergodic Markov chains. J. Appl. Probab. 42, 1003–1014 (2005)

    MATH  MathSciNet  Google Scholar 

  35. Mukhamedov F.: Dobrushin ergodicity coefficient and ergodicity of noncommutative Markov chains. Jour. Math. Anal. Appl. 408, 364–373 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mukhamedov F.: Weak ergodicity of nonhomogeneous Markov chains on noncommutative L 1-spaces. Banach J. Math. Anal. 7, 53–73 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mukhamedov F.: On L 1-weak ergodicity of nonhomogeneous discrete Markov processes and its applications. Rev. Mat. Compult. 26, 799–813 (2013)

    Article  MathSciNet  Google Scholar 

  38. Mukhamedov F.: On L 1-weak ergodicity of nonhomogeneous continuous-time Markov processes. Bull. Iran. Math. Soc. 40, 1227–1242 (2014)

    MathSciNet  Google Scholar 

  39. Mukhamedov F., Temir S., Akin H.: On stability properties of positive contractions of L 1-spaces accosiated with finite von Neumann algebras. Colloq. Math. 105, 259–269 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Niculescu C., Ströh A., Zsidó L.: Noncommutative extensions of classical and multiple recurrence theorems. J. Operator Theory. 50, 3–52 (2003)

    MATH  MathSciNet  Google Scholar 

  41. E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge Univ. Press (Cambridge, 1984).

  42. Ollivier Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256, 810–864 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Paz A.: Ergodic theorems for infinite probablistics tables. Ann. Math. Statist. 41, 539–550 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  44. Reeb D., Kastoryano M. J., Wolf M. M.: Hilbert’s projective metric in quantum information theory. J. Math. Phys. 52, 082201 (2011)

    Article  MathSciNet  Google Scholar 

  45. Rhodius A.: On ergodicity coefficients of infinite stochastic matrices. Zeit. Anal. Anwen. 19, 873–887 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. Sarymsakov T.A., Ya G., Ya G.: Regularity of monotonically continuous contractions acting on the von Neumann algebra. Dokl. Akad. Nauk UzSSR. 5, 9–11 (1987)

    Google Scholar 

  47. T. A. Sarymsakov, N. P. Zimakov, Ergodic properties of Markov operators in norm ordered spaces with a base, in: Operator Algebras and Functional Spaces, Fan (Tashkent, 1985), pp. 45–53.

  48. Sarymsakov T.A., Zimakov N. P.: Ergodic principle for the Markov semi-group in ordered normal spaces with basis. Dokl. Akad. Nauk. SSSR. 289, 554–558 (1986)

    MathSciNet  Google Scholar 

  49. Seneta E.: On the historical development of the theory of finite inhomogeneous Markov chains. Proc. Cambridge Philos. Soc. 74, 507–513 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  50. E. Seneta, Non-negative matrices and Markov chains, Springer (Berlin, 2006).

  51. Z. Suchanecki, An L 1 extension of stochastic dynamics for irreversible systems, in: Lecture Notes in Math. vol. 1391, Springer (Berlin–Heidelberg, 1984), pp. 367–374.

  52. Szarek T.: The stability of Markov operators on Polish spaces. Studia Math. 143, 145–152 (2000)

    MATH  MathSciNet  Google Scholar 

  53. Szehr O., Wolf M. M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54, 032203 (2013)

    Article  MathSciNet  Google Scholar 

  54. Ch. P. Tan, On the weak ergodicity of nonhomogeneous Markov chains, Statis. & Probab. Lett., 26 (1996), 293–295.

  55. Yang W.: Strong law of large numbers for countable nonhomogeneous Markov chain. Linear Alg. Appl. 430, 3008–3018 (2009)

    MATH  Google Scholar 

  56. Zaharopol R., Zbaganu G.: Dobrushin coefficients of ergodicity and asymptotically stable L 1-contractions. Jour. Theor. Probab. 99, 885–902 (1999)

    Article  MathSciNet  Google Scholar 

  57. Zeifman A. I., Isaacson D. L.: On strong ergodicity for nonhomogeneous continuous-time Markov chains. Stochast. Process. Appl. 50, 263–273 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  58. Z. H. Li, Measure-valued Branching Markov Processes, Sptinger-Verlag (Berlin, 2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mukhamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F. Ergodic properties of nonhomogeneous Markov chains defined on ordered Banach spaces with a base. Acta Math. Hungar. 147, 294–323 (2015). https://doi.org/10.1007/s10474-015-0545-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-015-0545-2

Key words and phrases

Mathematics Subject Classification

Navigation