Probabilistic uniform convergence spaces redefined
Article
First Online:
Received:
Revised:
Accepted:
- 114 Downloads
- 1 Citations
Abstract
We develop a theory of probabilistic uniform convergence spaces based on Tardiff’s neighbourhood systems for probabilistic metric spaces. We show that the resulting category is topological and Cartesian closed. A subcategory is identified that is isomorphic to the category of probabilistic metric spaces.
Key words and phrases
probabilistic metric space probabilistic uniform convergence space probabilistic uniform space distance distribution functionMathematics Subject Classification
54E70 54E15 54A20Preview
Unable to display preview. Download preview PDF.
References
- 1.J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories, Wiley (New York, 1989).Google Scholar
- 2.Cook C.H., Fischer H.R.: Uniform convergence structures. Math. Ann. 173, 290–306 (1967)MathSciNetCrossRefGoogle Scholar
- 3.Florescu L.C.: Probabilistic convergence structures. Aequationes Math. 38, 123–145 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 4.Fritsche R.: Topologies for probabilistic metric spaces. Fund. Math. 72, 7–16 (1971)MathSciNetMATHGoogle Scholar
- 5.G. Jäger, A convergence theory for probabilistic metric spaces, Quaestiones Math., to appear.Google Scholar
- 6.Nusser H.: A generalization of probabilistic uniform spaces. Appl. Categ. Structures 10, 81–98 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 7.G. Preuss, Foundations of Topology. An Approach to Convenient Topology, Kluwer Academic Publishers (Dordrecht, 2002).Google Scholar
- 8.Saminger-Platz S., Sempi C.: A primer on triangle functions I. Aequationes Math. 76, 201–240 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 9.Saminger-Platz S., Sempi C.: A primer on triangle functions II. Aequationes Math. 80, 239–261 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 10.B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland (New York, 1983).Google Scholar
- 11.Sibley D.A.: A metric for weak convergence of distribution functions. Rocky Mountain J. Math. 1, 427–430 (1971)MathSciNetCrossRefMATHGoogle Scholar
- 12.Tardiff R.M.: Topologies for probabilistic metric spaces. Pacific J. Math. 65, 233–251 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 13.O.Wyler, Filter space monads, regularity, completions, in: TOPO 1972 General Topology and its Applications, Lecture Notes in Mathematics, Vol. 378, Springer (Berlin, Heidelberg, New York, 1974), 591–637.Google Scholar
Copyright information
© Akadémiai Kiadó, Budapest, Hungary 2015