Acta Mathematica Hungarica

, Volume 147, Issue 1, pp 205–219 | Cite as

On the complete convergence for sequences of random vectors in Hilbert spaces

  • N. V. Huan


This note is a continuation of the paper [7]. Let \({\{X_{n},\ {n\geqq 1}\}}\) be a sequence of coordinatewise negatively associated random vectors taking values in a real separable Hilbert space with the k-th partial sum S k , \({k \geqq 1}\). We provide conditions for the convergence of \({\sum_{n=1}^{\infty} \frac{1}{n} \, \mathbb{P}({\rm max}_{1 \leqq k \leqq n} \|S_k\| > \varepsilon n^{\alpha })}\) and \({\sum_{n=1}^{\infty} \frac{{\rm log} n}{n} \, \mathbb{P}({\rm max}_{1 \leqq k \leqq n} \|S_k\| > \varepsilon n^{\alpha})}\) for all \({\varepsilon > 0}\). The converses of these results are also discussed.

Key words and phrases

complete convergence Baum–Katz theorem coordinatewise negatively associated random vector Hilbert space 

Mathematics Subject Classification

60F15 60B12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alam K., Saxena K. M. L.: Positive dependence in multivariate distributions, Comm. Statist. A-Theory Methods 10, 1183–1196 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. I. Baek, I. B. Choi and S. L. Niu, On the complete convergence of weighted sums for arrays of negatively associated variables, J. Korean Statist. Soc., 37 (2008), 73–80.Google Scholar
  3. 3.
    L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc., 120 (1965), 108–123.Google Scholar
  4. 4.
    P. Erdős, On a theorem of Hsu and Robbins, Ann. Math. Statistics, 20 (1949), 286–291.Google Scholar
  5. 5.
    P. Erdős, Remark on my paper “On a theorem of Hsu and Robbins”, Ann. Math. Statistics, 21 (1950), 138.Google Scholar
  6. 6.
    P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 25–31.Google Scholar
  7. 7.
    N. V. Huan, N. V. Quang and N. T. Thuan, Baum–Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces, Acta Math. Hungar., 144 (2014), 132–149.Google Scholar
  8. 8.
    K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist., 11 (1983), 286–295.Google Scholar
  9. 9.
    M. H. Ko, On the complete convergence for negatively associated random fields, Taiwanese J. Math., 15 (2011), 171–179.Google Scholar
  10. 10.
    M. H. Ko, T. S. Kim and K. H. Han, A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Theoret. Probab., 22 (2009), 506–513.Google Scholar
  11. 11.
    A. Kuczmaszewska, On complete convergence in Marcinkiewicz–Zygmund type SLLN for negatively associated random variables, Acta Math. Hungar., 128 (2010), 116–130.Google Scholar
  12. 12.
    A. Kuczmaszewska and Z. A. Lagodowski, Convergence rates in the SLLN for some classes of dependent random fields, J. Math. Anal. Appl., 380 (2011), 571–584.Google Scholar
  13. 13.
    Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab., 13 (2000), 343–356.Google Scholar
  14. 14.
    S. H. Sung, On complete convergence for weighted sums of arrays of dependent random variables, Abstr. Appl. Anal., 2011, Art. ID 630583, 11 pp.Google Scholar
  15. 15.
    L. X. Zhang, Strassen’s law of the iterated logarithm for negatively associated random vectors, Stochastic Process. Appl., 95 (2001), 311–328.Google Scholar
  16. 16.
    L. X. Zhang and J. W. Wen, A strong law of large numbers for B-valued random fields, Chinese Ann. Math. Ser. A, 22 (2001), 205–216.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of Mathematics and ApplicationsSaigon UniversityHo Chi Minh CityVietnam

Personalised recommendations