Configurational axioms derived from Möbius configurations

A Correction to this article was published on 08 February 2021

This article has been updated


We prove, in a formal way, that the Möbius configuration and one of its generalizations yield an elementary characterization of Pappian projective 3-space i.e. they close exactly in projective spaces coordinatized by fields (commutative division rings).

This is a preview of subscription content, access via your institution.

Change history


  1. 1.

    Coxeter H.S.M.: Self-dual configurations and regular graphs, Bull. Amer. Math. Soc., 56, 413–455 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Glynn D.: A note on N k -configurations and theorems in projective space, Bull. Amer. Math. Soc., 76, 15–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Glynn D.: Theorems of points and planes in three-dimensional projective space, J. Aust. Math. Soc., 88, 75–92 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    H. Havlicek, B. Odehnal and M. Saniga, Möbius pairs of simplices and commuting Pauli operators, Math. Pannon., 21 (2010), 115–128.

  5. 5.

    A. F. Möbius, Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heissen?, Journal für die reine und angewandte Mathematik, 3. In Gesammelte Werke (1886), vol. 1, 439–449.

  6. 6.

    K. Petelczyc, On some generalization of the Möbius configuration, submitted.

  7. 7.

    Witczyński K.: Möbius theorem and commutativity, J. Geom., 59, 182–183 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Petelczyc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petelczyc, P., Prażmowska, M. & Prażmowski, K. Configurational axioms derived from Möbius configurations. Acta Math. Hungar. 145, 304–308 (2015).

Download citation

Key words and phrases

  • Möbius configuration
  • axiom
  • projective space

Mathematics Subject Classification

  • 51A20
  • 51A30