Skip to main content
Log in

Pitt’s Inequality and Logarithmic Uncertainty Principle for the Dunkl Transform on \({\mathbb{R}}\)

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We establish Pitt’s inequality and deduce Beckner’s logarithmic uncertainty principle for the Dunkl transform on \({\mathbb{R}}\). Also, we prove Stein–Weiss inequality for the Dunkl–Bessel potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckner W.: Pitt’s inequality and the uncertainty principle. Proc. Amer. Math. Soc. 123, 1897–1905 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Beckner W.: Pitt’s inequality with sharp convolution estimates. Proc. Amer. Math. Soc. 136, 1871–1885 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Betancor J. J., Rodriguez-Mesa L.: On Hankel transformation, convolution operators and multipliers on Hardy type spaces. J. Math. Soc. Japan 53, 687–709 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dunkl C. F.: Integral kernels with reflection group invariance. Canad. J. Math. 43, 1213–1227 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dunkl C. F.: Hankel transforms associated to finite reflection groups. Contemp. Math. 138, 123–138 (1992)

    Article  MathSciNet  Google Scholar 

  6. de Jeu M.F.E.: The Dunkl transform. Invent. Math. 113, 147–162 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hassani S., Mustapha S., Sifi M.: Riesz potentials and fractional maximal function for the Dunkl transform. J. Lie Theory 19, 725–734 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Kawazoe T., Mejjaoli H.: Uncertainty principles for the Dunkl transform. Hiroshima Math. J. 40, 241–268 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Omri S.: Logarithmic uncertainty principle for the Hankel tansform. Int. Trans. Spec. Funct. 22, 655–670 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Rösler, Bessel-type signed hypergroups on \({\mathbb{R}}\) , in: Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), Editors H. Heyer and A. Mukherjea (Oberwolfach, 1994), World Sci. Publ., River Edge, NJ (1995), pp. 292–304.

  11. Rösler M.: An uncertainty principle for the Dunkl transform. Bull. Austral. Math. Soc. 59, 353–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shimeno N.: A note on the uncertainty principle for the Dunkl transform. J. Math. Sci. Univ. Tokyo 8, 33–42 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Soltani F.: L p-Fourier multipliers for the Dunkl operator on the real line. J. Funct. Anal. 209, 16–35 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Soltani F.: Sonine transform associated to the Dunkl kernel on the real line. SIGMA 4, 1–14 (2008)

    Google Scholar 

  15. Soltani F.: A general form of Heisenberg–Pauli–Weyl uncertainty inequality for the Dunkl transform. Int. Trans. Spec. Funct. 24, 401–409 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Stempak, La théorie de Littlewood–Paley pour la transformation de Fourier–Bessel, C.R. Acad. Sci. Paris, 303 Serie I (1) (1986), 15–18.

  17. Thangavelu S., Xu Y.: Convolution operator and maximal function for the Dunkl transform. J. Anal. Math. 97, 25–56 (2005)

    Article  MathSciNet  Google Scholar 

  18. Thangavelu S., Xu Y.: Riesz transform and Riesz potentials for Dunkl transform. J. Comput. Appl. Math. 199, 181–195 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. G. N. Watson, A Treatise on Theory of Bessel Functions, Cambridge University Press (Cambridge, 1966).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Soltani.

Additional information

Author partially supported by DGRST project 04/UR/15-02 and CMCU program 10G 1503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltani, F. Pitt’s Inequality and Logarithmic Uncertainty Principle for the Dunkl Transform on \({\mathbb{R}}\) . Acta Math. Hungar. 143, 480–490 (2014). https://doi.org/10.1007/s10474-014-0415-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-014-0415-3

Key words and phrases

Mathematics Subject Classification

Navigation