Advertisement

Acta Mathematica Hungarica

, Volume 143, Issue 1, pp 185–191 | Cite as

Derivation of the Real-Rootedness of Coordinator Polynomials from the Hermite–Biehler Theorem

  • M. H. Y. Xie
  • P. B. ZhangEmail author
Article
  • 111 Downloads

Abstract

By using the Hermite–Biehler theorem, we give a new proof of the real-rootedness of the coordinator polynomials of type D, which was recently established by Wang and Zhao. As a consequence, we also obtain the compatibility between the coordinator polynomials of type D and those of type C.

Keywords and phrases

coordinator polynomial real-rootedness the Hermite–Biehler theorem compatibility 

Mathematics Subject Classification

26C10 30C15 05A15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardila F., Beck M., Hoşten S., Pfeifle J., Seashore K.: Root polytopes and growth series of root lattices. SIAM J Discrete Math. 25, 360–378 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baake M., Grimm U.: Coordination sequences for root lattices and related graphs. Z Krist. 212, 253–256 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d’Ehrhart associ ées aux réseaux de racines, C.R. Acad. Sci. Paris Sér. I Math., 325 (1997), 1137–1142.Google Scholar
  4. 4.
    Brändén P.: Iterated sequences and the geometry of zeros. J Reine Angew. Math. 658, 115–131 (2011)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Chudnovsky M., Seymour P.: The roots of the independence polynomial of a clawfree graph. J Combin. Theory Ser. B. 97, 350–357 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Conway J. H., Sloane N.J. A.: Low-dimensional lattices. VII. Coordination sequences. Proc. Roy. Soc. London Ser. A. 453, 2369–2389 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Craven T., Csordas G.: The Fox–Wright functions and Laguerre multiplier sequences. J Math. Anal. Appl. 314, 109–125 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    G. Csordas, M. Charalambides, and F. Waleffe, A new property of a class of Jacobi polynomials, Proc. Amer. Math. Soc., 133 (2005), 3551–3560 (electronic).Google Scholar
  9. 9.
    J.-P. Dedieu, Obreschkoff’s theorem revisited: what convex sets are contained in the set of hyperbolic polynomials?, J. Pure Appl. Algebra, 81 (1992), 269–278.Google Scholar
  10. 10.
    S. Fisk, Polynomials, roots, and interlacing, arXiv:math/0612833 [math.CA].
  11. 11.
    Holtz O.: Hermite–Biehler, Routh–Hurwitz, and total positivity. Linear Algebra Appl. 372, 105–110 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, vol. 26 of London Mathematical Society Monographs. New Series, The Clarendon Press Oxford University Press (Oxford, 2002).Google Scholar
  13. 13.
    D. G. L. Wang and T. Zhao, The real-rootedness and log-concavities of coordinator polynomials of Weyl group lattices, European J. Combin., 34 (2013), 490–494.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Center for Combinatorics, LPMC-TJKLCNankai UniversityTianjinP.R. China
  2. 2.Center for Applied MathematicsTianjin UniversityTianjinP.R. China

Personalised recommendations