Skip to main content
Log in

Markoff–Rosenberger triples in geometric progression

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We study solutions of the Markoff–Rosenberger equation ax 2+by 2+cz 2=dxyz whose coordinates belong to the ring of integers of a number field and form a geometric progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aguirre, A. Dujella and J. C. Peral, Arithmetic progressions and pellian equations, preprint (2012).

  2. P. Alvanos, Y. Bilu and D. Poulakis, Characterizing algebraic curves with infinitely many integral points, Int. J. Number Theory, 5 (2009), 585–590.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Alvanos and D. Poulakis, Solving genus zero Diophantine equations over number fields, J. Symbolic Comput., 46 (2011), 54–69.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Alvarado, An arithmetic progression on quintic curves, J. Integer Seq., 12 (2009), Article 09.7.3 (electronic).

  5. A. Alvarado, Arithmetic progressions on quartic elliptic curves, Ann. Math. Inform., 37 (2010), 3–6.

    MATH  MathSciNet  Google Scholar 

  6. A. Alvarado, Arithmetic progressions in the y-coordinates on certain elliptic curves, in: F. Luca and P. Stanica (Eds.), Aportaciones Matemáticas, Investigación 20: Proceedings of the Fourteenth International Conference on Fibonacci Numbers, Sociedad Matemática Mexicana (2011), pp. 1–9.

    Google Scholar 

  7. A. Alvarado and E. H. Goins, Arithmetic progressions on conic sections, preprint (2012) (arXiv:1210.6612).

  8. C. Baer and G. Rosenberger, The equation ax 2+by 2+cz 2=dxyz over quadratic imaginary fields, Results Math., 33 (1998), 30–39.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Bazsó, Further computational experiences on norm form equations with solutions forming arithmetic progressions, Publ. Math. Debrecen, 71 (2007), 489–497.

    MATH  MathSciNet  Google Scholar 

  10. A. Bérczes, L. Hajdu and A. Pethő, Arithmetic progressions in the solution sets of norm form equations, Rocky Mountain J. Math., 40 (2010), 383–395.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Bérczes and A. Pethő, On norm form equations with solutions forming arithmetic progressions, Publ. Math. Debrecen, 65 (2004), 281–290.

    MATH  MathSciNet  Google Scholar 

  12. A. Bérczes and A. Pethő, Computational experiences on norm form equations with solutions forming arithmetic progressions, Glas. Mat. Ser. III, 41 (2006), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Bérczes and V. Ziegler, On geometric progressions on pell equations and lucas sequences, Glas. Mat. Ser. III, 48 (2013), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Bosma, J. Cannon, C. Fieker and A. Steel (Eds.), Handbook of Magma functions, 2.19-2 ed. (2012), http://magma.maths.usyd.edu.au/magma.

  15. A. Bremner, On arithmetic progressions on elliptic curves, Experiment. Math., 8 (1999), 409–413.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Bremner, J. H. Silverman and N. Tzanakis, Integral points in arithmetic progression on y 2=x(x 2n 2), J. Number Theory, 80 (2000), 187–208.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Bremner and M. Ulas, Rational points in geometric progressions on certain hyperelliptic curves, Publ. Math. Debrecen, 82 (2013), 669–683.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Campbell, A note on arithmetic progressions on elliptic curves, J. Integer Seq., 6 (2003), Article 03.1.3 (electronic).

  19. A. Dujella, A. Pethő and P. Tadić, On arithmetic progressions on Pellian equations, Acta Math. Hungar., 120 (2008), 29–38.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. García-Selfa and J. M. Tornero, Searching for simultaneous arithmetic progressions on elliptic curves, Bull. Austral. Math. Soc., 71 (2005), 417–424.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. García-Selfa and J. M. Tornero, On simultaneous arithmetic progressions on elliptic curves, Experiment. Math., 15 (2006), 471–478.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. González-Jiménez and J. M. Tornero, Markoff–Rosenberger triples in arithmetic progression, J. Symbolic Comput., 53 (2013), 53–63.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. González-Jiménez, On arithmetic progressions on Edwards curves, preprint (arXiv:1304.4361).

  24. J.-B. Lee and W. Y. Vélez, Integral solutions in arithmetic progression for y 2=x 3+k, Period. Math. Hungar., 25 (1992), 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. J. MacLeod, 14-term arithmetic progressions on quartic elliptic curves, J. Integer Seq., 9 (2006), Article 06.1.2 (electronic).

  26. A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann., 15 (1879), 381–406.

    Article  MATH  Google Scholar 

  27. A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann., 17 (1880), 379–399.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. P. Mohanty, On consecutive integer solutions for y 2k=x 3, Proc. Amer. Math. Soc., 48 (1975), 281–285.

    MATH  MathSciNet  Google Scholar 

  29. D. Moody, Arithmetic progressions on Edwards curves, J. Integer Seq., 14 (2011), Article 11.1.7, 4 (electronic).

  30. D. Moody, Arithmetic progressions on Huff curves, Ann. Math. Inform., 38 (2011), 111–116.

    MATH  MathSciNet  Google Scholar 

  31. A. Pethő and V. Ziegler, Arithmetic progressions on Pell equations, J. Number Theory, 128 (2008), 1389–1409.

    Article  MathSciNet  Google Scholar 

  32. D. Poulakis and E. Voskos, On the practical solution of genus zero Diophantine equations, J. Symbolic Comput., 30 (2000), 573–582.

    Article  MATH  MathSciNet  Google Scholar 

  33. G. Rosenberger, Über die diophantische Gleichung ax 2+by 2+cz 2=dxyz, J. Reine Angew. Math., 305 (1979), 122–125.

    MATH  MathSciNet  Google Scholar 

  34. R. Schwartz, J. Solymosi and F. de Zeeuw, Simultaneous arithmetic progressions on algebraic curves, Int. J. Number Theory, 7 (2011), 921–931.

    Article  MATH  MathSciNet  Google Scholar 

  35. C. L. Siegel, Über einige anwendungen diophantischer Approximationen, Abh. Preuss Akad. Wiss. Phys.-Math. Kl., 1 (1929), 41–69.

    Google Scholar 

  36. B. K. Spearman, Arithmetic progressions on congruent number elliptic curves, Rocky Mountain J. Math., 41 (2011), 2033–2044.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Ulas, A note on arithmetic progressions on quartic elliptic curves, J. Integer Seq., 8 (2005), Article 05.3.1 (electronic).

  38. M. Ulas, On arithmetic progressions on genus two curves, Rocky Mountain J. Math., 39 (2009), 971–980.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Ulas, Rational points in arithmetic progressions on y 2=x n+k, Canad. Math. Bull., 55 (2012), 193–207.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique González-Jiménez.

Additional information

The author was partially supported by the grant MTM2012–35849.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Jiménez, E. Markoff–Rosenberger triples in geometric progression. Acta Math Hung 142, 231–243 (2014). https://doi.org/10.1007/s10474-013-0351-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-013-0351-7

Key words and phrases

Mathematics Subject Classification

Navigation