Abstract
First we present a short overview of the long history of projectively flat Finsler spaces. We give a simple and quite elementary proof of the already known condition for the projective flatness, and we give a criterion for the projective flatness of a special Lagrange space (Theorem 1). After this we obtain a second-order PDE system, whose solvability is necessary and sufficient for a Finsler space to be projectively flat (Theorem 2). We also derive a condition in order that an infinitesimal transformation takes geodesics of a Finsler space into geodesics. This yields a Killing type vector field (Theorem 3). In the last section we present a characterization of the Finsler spaces which are projectively flat in a parameter-preserving manner (Theorem 4), and we show that these spaces over \({\mathbb {R}}^{n}\) are exactly the Minkowski spaces (Theorems 5 and 6).
This is a preview of subscription content, access via your institution.
References
R. Alexander, Zonoid theory and Hilbert’s fourth problem, Geom. Dedicata, 28 (1988), 199–211.
J. C. Álvarez Paiva, Symplectic geometry and Hilbert’s fourth problem, J. Differential Geom., 69 (2005), 353–378.
S. Bácsó and Z. Szilasi, On the projective theory of sprays, Acta Math. Acad. Paed. Nyíregyháziensis, 26 (2010), 171–207.
D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry, Springer Verlag (New York, 2000).
T. Q. Binh and X. Cheng, On a class of projectively flat (α,β)-Finsler metric, Publ. Math. Debrecen, 73 (2008), 391–400.
H. Busemann, The Geometry of Geodesics, Academic Press (New York, 1955).
H. Busemann, Problem IV: Desarguesian spaces, Proc. A.M.S. Symp. Pure Math., 28 (1976), 131–144.
H. Busemann and P. Kelly, Projective Geometry and Projective Metrics, Academic Press (New York, 1953).
X. Cheng and M. Li, On a class of projectively flat Randers metrics, Publ. Math. Debrecen, 71 (2007), 195–205.
M. Crampin, Some remarks on the Finslerian version of Hilbert’s fourth problem, Houston J. of Math., 37 (2011), 369–391.
P. Funk, Über Geometrien, bei denen die Geraden die Kürzesten sind, Math. Ann., 101 (1929), 226–237.
G. Hamel, Über die Geometrien, in denen die Geraden die Kürzesten sind, Math. Ann., 57 (1903), 231–264.
D. Hilbert, Gesammelte Abhandlugen, Band III, 303–305, or, Archiv f. Math. u. Phys. 3. Reihe, Bd. I (1901), 44–65, 213–232.
B. Li and Z. Shen, On a class of projectively flat Finsler metrics with constant flag cuvature, Internat. J. Math., 18 (2007), 749–760.
M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor, 34 (1980), 303–315.
M. Matsumoto and X. Wei, Projective changes of Finsler spaces of constant curvature, Publ. Math. Debrecen, 44 (1994), 175–181.
X. Mo, Z. Shen and C. Yang, Some constructions of projectively flat Finsler metrics, Sci. China Ser. A, 49 (2006), 708–714.
A. V. Pogorelov, Hilbert’s Fourth Problem, Scripta Series in Mathematics, Winston and Sons (New York, 1979).
A. Rapcsák, Über die bahntreuen Abbildungen metrischer Räume, Publ. Math. Debrecen, 8 (1961), 285–290.
Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Ac. Publ. (Dordrecht, 2001).
Z. Shen, On projectively flat (α,β)-metrics, Canad. Math. Bull., 52 (2009), 132–144.
Z. Shen, Projectively flat Randers metrics with constant flag curvature, Math. Ann., 325 (2003), 19–30.
Z. Shen and C. Yildrim, On a class with projectively flat metrics with constant flag curvature, Canad. J. Math., 60 (2008), 443–456.
Z. I. Szabó, Hilbert’s Fourth Problem I, Adv. in Math., 59 (1986), 185–301.
J. Szilasi, Calculus along the tangent bundle projection and projective metrizability, in: Diff. Geom. Appl., World Sci. Publ. (New Jersey, 2009), pp. 539–568.
L. Tamássy, Relation between metric spaces and Finsler spaces, Differential Geom. Appl., 26 (2008), 483–494.
A. C. Thompson, Minkowski Geometry, Cambridge University Press (1996).
Author information
Authors and Affiliations
Corresponding author
Additional information
The publication is supported by the TÁMOP-4.2.2/B-10/1-2010-0024 project. The project is co-financed by the European Union and the European Social Fund.
Corresponding author.
Rights and permissions
About this article
Cite this article
Binh, T.Q., Kertész, D.C. & Tamássy, L. On projectively flat Finsler spaces. Acta Math Hung 141, 383–400 (2013). https://doi.org/10.1007/s10474-013-0327-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-013-0327-7