Skip to main content

On projectively flat Finsler spaces

Abstract

First we present a short overview of the long history of projectively flat Finsler spaces. We give a simple and quite elementary proof of the already known condition for the projective flatness, and we give a criterion for the projective flatness of a special Lagrange space (Theorem 1). After this we obtain a second-order PDE system, whose solvability is necessary and sufficient for a Finsler space to be projectively flat (Theorem 2). We also derive a condition in order that an infinitesimal transformation takes geodesics of a Finsler space into geodesics. This yields a Killing type vector field (Theorem 3). In the last section we present a characterization of the Finsler spaces which are projectively flat in a parameter-preserving manner (Theorem 4), and we show that these spaces over \({\mathbb {R}}^{n}\) are exactly the Minkowski spaces (Theorems 5 and 6).

This is a preview of subscription content, access via your institution.

References

  1. R. Alexander, Zonoid theory and Hilbert’s fourth problem, Geom. Dedicata, 28 (1988), 199–211.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. C. Álvarez Paiva, Symplectic geometry and Hilbert’s fourth problem, J. Differential Geom., 69 (2005), 353–378.

    MathSciNet  MATH  Google Scholar 

  3. S. Bácsó and Z. Szilasi, On the projective theory of sprays, Acta Math. Acad. Paed. Nyíregyháziensis, 26 (2010), 171–207.

    MATH  Google Scholar 

  4. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry, Springer Verlag (New York, 2000).

    Book  MATH  Google Scholar 

  5. T. Q. Binh and X. Cheng, On a class of projectively flat (α,β)-Finsler metric, Publ. Math. Debrecen, 73 (2008), 391–400.

    MathSciNet  MATH  Google Scholar 

  6. H. Busemann, The Geometry of Geodesics, Academic Press (New York, 1955).

    MATH  Google Scholar 

  7. H. Busemann, Problem IV: Desarguesian spaces, Proc. A.M.S. Symp. Pure Math., 28 (1976), 131–144.

    MathSciNet  Google Scholar 

  8. H. Busemann and P. Kelly, Projective Geometry and Projective Metrics, Academic Press (New York, 1953).

    MATH  Google Scholar 

  9. X. Cheng and M. Li, On a class of projectively flat Randers metrics, Publ. Math. Debrecen, 71 (2007), 195–205.

    MathSciNet  MATH  Google Scholar 

  10. M. Crampin, Some remarks on the Finslerian version of Hilbert’s fourth problem, Houston J. of Math., 37 (2011), 369–391.

    MathSciNet  MATH  Google Scholar 

  11. P. Funk, Über Geometrien, bei denen die Geraden die Kürzesten sind, Math. Ann., 101 (1929), 226–237.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Hamel, Über die Geometrien, in denen die Geraden die Kürzesten sind, Math. Ann., 57 (1903), 231–264.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Hilbert, Gesammelte Abhandlugen, Band III, 303–305, or, Archiv f. Math. u. Phys. 3. Reihe, Bd. I (1901), 44–65, 213–232.

  14. B. Li and Z. Shen, On a class of projectively flat Finsler metrics with constant flag cuvature, Internat. J. Math., 18 (2007), 749–760.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor, 34 (1980), 303–315.

    MathSciNet  MATH  Google Scholar 

  16. M. Matsumoto and X. Wei, Projective changes of Finsler spaces of constant curvature, Publ. Math. Debrecen, 44 (1994), 175–181.

    MathSciNet  MATH  Google Scholar 

  17. X. Mo, Z. Shen and C. Yang, Some constructions of projectively flat Finsler metrics, Sci. China Ser. A, 49 (2006), 708–714.

    Article  MathSciNet  Google Scholar 

  18. A. V. Pogorelov, Hilbert’s Fourth Problem, Scripta Series in Mathematics, Winston and Sons (New York, 1979).

    Google Scholar 

  19. A. Rapcsák, Über die bahntreuen Abbildungen metrischer Räume, Publ. Math. Debrecen, 8 (1961), 285–290.

    MathSciNet  MATH  Google Scholar 

  20. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Ac. Publ. (Dordrecht, 2001).

    Book  MATH  Google Scholar 

  21. Z. Shen, On projectively flat (α,β)-metrics, Canad. Math. Bull., 52 (2009), 132–144.

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Shen, Projectively flat Randers metrics with constant flag curvature, Math. Ann., 325 (2003), 19–30.

    Article  MathSciNet  MATH  Google Scholar 

  23. Z. Shen and C. Yildrim, On a class with projectively flat metrics with constant flag curvature, Canad. J. Math., 60 (2008), 443–456.

    Article  MathSciNet  MATH  Google Scholar 

  24. Z. I. Szabó, Hilbert’s Fourth Problem I, Adv. in Math., 59 (1986), 185–301.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Szilasi, Calculus along the tangent bundle projection and projective metrizability, in: Diff. Geom. Appl., World Sci. Publ. (New Jersey, 2009), pp. 539–568.

    Google Scholar 

  26. L. Tamássy, Relation between metric spaces and Finsler spaces, Differential Geom. Appl., 26 (2008), 483–494.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. C. Thompson, Minkowski Geometry, Cambridge University Press (1996).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tamássy.

Additional information

The publication is supported by the TÁMOP-4.2.2/B-10/1-2010-0024 project. The project is co-financed by the European Union and the European Social Fund.

Corresponding author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Binh, T.Q., Kertész, D.C. & Tamássy, L. On projectively flat Finsler spaces. Acta Math Hung 141, 383–400 (2013). https://doi.org/10.1007/s10474-013-0327-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-013-0327-7

Key words and phrases

Mathematics Subject Classification