On the mantissa distribution of powers of natural and prime numbers


Given a fixed integer exponent r≧1, the mantissa sequences of (n r) n and of \({(p_{n}^{r})}_{n}\), where p n denotes the nth prime number, are known not to admit any distribution with respect to the natural density. In this paper however, we show that, when r goes to infinity, these mantissa sequences tend to be distributed following Benford’s law in an appropriate sense, and we provide convergence speed estimates. In contrast, with respect to the log-density and the loglog-density, it is known that the mantissa sequences of (n r) n and of \({(p_{n}^{r})}_{n}\) are distributed following Benford’s law. Here again, we provide previously unavailable convergence speed estimates for these phenomena. Our main tool is the Erdős–Turán inequality.

This is a preview of subscription content, access via your institution.


  1. [1]

    D. I. Cohen and T. M. Katz, Prime numbers and the first digit phenomenon, J. Number Theory, 18 (1984), 261–268.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    P. Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probab., 5 (1977), 72–81.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer-Verlag (Berlin, 1997).

    MATH  Google Scholar 

  4. [4]

    R. L. Duncan, Note on the initial digit problem, Fibonacci Quart., 7 (1969), 474–475.

    MATH  Google Scholar 

  5. [5]

    A. Fuchs and G. Letta, Le problème du premier chiffre décimal pour les nombres premiers, (French) [The first digit problem for primes], Electron. J. Combin., 3 (1996), R25.

    MathSciNet  Google Scholar 

  6. [6]

    D. E. Knuth, The Art of Computer Programming, Volume 2, Addison-Wesley (Reading, Massachusetts, 1969).

    Google Scholar 

  7. [7]

    L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Dover Publications (New York, 2006).

    Google Scholar 

  8. [8]

    B. Massé and D. Schneider, On weighted densities and their connection with the first digit phenomenon, Rocky Mountain J. Math., 51 (2011), 1395–1415.

    Article  Google Scholar 

  9. [9]

    P. N. Posch, A survey of sequences and distribution functions satisfying the first-digit-law, J. Stat. and Management Systems, 11 (2008), 1–19.

    MathSciNet  MATH  Google Scholar 

  10. [10]

    R. Raimi, The first digit problem, Amer. Math. Monthly, 83 (1976), 521–538.

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    P. Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer (Berlin, 2004), 185 p.

    MATH  Google Scholar 

  12. [12]

    J. Rivat and G. Tenenbaum, Inégalités d’Erdős–Turán, Ramanujan J., 9 (2005), 111–121.

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., The Clarendon Press, Oxford University Press (New York, 1986).

    MATH  Google Scholar 

  14. [14]

    R. E. Whitney, Initial digits for the sequence of primes, Amer. Math. Monthly, 79 (1972), 150–152.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bruno Massé.

Additional information

Corresponding author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eliahou, S., Massé, B. & Schneider, D. On the mantissa distribution of powers of natural and prime numbers. Acta Math Hung 139, 49–63 (2013). https://doi.org/10.1007/s10474-012-0244-1

Download citation

Key words and phrases

  • Benford’s law
  • mantissa
  • prime number

Mathematics Subject Classification

  • 60B10
  • 11B05
  • 11K99