Skip to main content
Log in

Differential calculus for linear operators represented by finite signed measures and applications

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

An Erratum to this article was published on 12 October 2012

Abstract

We introduce a differential calculus for linear operators represented by a family of finite signed measures. Such a calculus is based on the notions of g-derived operators and processes and g-integrating measures, g being a right-continuous nondecreasing function. Depending on the choice of g, this differential calculus works for non-smooth functions and under weak integrability conditions. For linear operators represented by stochastic processes, we provide a characterization criterion of g-differentiability in terms of characteristic functions of the random variables involved. Various illustrative examples are considered. As an application, we obtain an efficient algorithm to compute the Riemann zeta function ζ(z) with a geometric rate of convergence which improves exponentially as ℜ(z) increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Adell, Asymptotic estimates for Stieltjes constants. A probabilistic approach, Proc. R. Soc. A, 467 (2011), 954–963.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. A. Adell and P. Jodrá, On a Ramanujan’s equation conected with the median of the gamma distribution, Trans. Amer. Math. Soc., 360 (2008), 3631–3644.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. A. Adell and A. Lekuona, Taylor’s formula and preservation of generalized convexity for positive linear operators, J. Appl. Prob., 37 (2000), 765–777.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. A. Adell and A. Lekuona, Sharp estimates in signed Poisson approximation of Poisson mixtures, Bernoulli, 11 (2005), 47–65.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. A. Adell, A. Lekuona and Y. Yu, Sharp bounds on the entropy of the Poisson law and related quantities, IEEE Trans. Inform. Theory, 56 (2010), 2299–2306.

    Article  MathSciNet  Google Scholar 

  6. I. B. Alberink, A Berry–Esseen bound for U-statistics in the non-i.i.d. case, J. Theoret. Probab., 13 (2000), 519–533.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Arias de Reyna, High precision computation of Riemann’s zeta function by the Riemann–Siegel formula, Math. Comp., 80 (2011), 995–1009.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. D. Barbour and V. Čekanavičius, Total variation asymptotics for sums of independent integer random variables, Ann. Probab., 30 (2002), 509–545.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. S. Borisov and P. S. Rouzankin, Poisson approximation for expectations of unbounded functions of independent random variables, Ann. Probab., 30 (2002), 1657–1680.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. M. Borwein, D. M. Bradley and R. E. Crandall, Computational strategies for the Riemann zeta function, J. Comput. Appl. Math., 121 (2000), 247–296.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Borwein, An efficient algorithm for the Riemann zeta function, Can. Math. Soc. Conf. Proc., 27 (2000), 29–34.

    Google Scholar 

  12. A. Bose, A. Dasgupta and H. Rubin, A contemporary review and bibliography of infinitely divisible distributions and processes, Sankhyā Ser. A, 64 (2002), 763–819.

    MathSciNet  MATH  Google Scholar 

  13. M. W. Coffey, An efficient algorithm for the Hurwitz zeta and related functions, J. Comput. Appl. Math., 225 (2009), 338–346.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Cohen, F. Rodríguez Villegas and D. Zagier, Convergence Acceleration of Alternating Series (Bonn, 1991).

  15. M. Denuit and S. Van Bellegem, On the stop-loss and total variation distances between random sums, Statist. Prob. Lett., 53 (2001), 153–165.

    Article  MATH  Google Scholar 

  16. Z. Ditzian, Polynomial approximation and \(w_{\varphi}^{r} (f,t)\) twenty years later, Surv. Approx. Theory, 3 (2007), 106–151.

    MathSciNet  MATH  Google Scholar 

  17. Z. Ditzian and V. Totik, Moduli of Smoothness, Springer (New York, 1987).

    Book  MATH  Google Scholar 

  18. J. L. Doob, Measure Theory, Springer (New York, 1994).

    Book  MATH  Google Scholar 

  19. B. R. Draganov, Exact estimates of the rate of approximation of convolution operators, J. Approx. Theory, 162 (2010), 952–979.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. M. Dudley and R. Norvaiša, Differentiability of Six Operators on Nonsmooth Functions and p-Variation, Lecture Notes in Math. 1703, Springer (Berlin, 1999).

    Google Scholar 

  21. W. Feller, An Introduction to Probability Theory and Its Applications 2, John Wiley (New York, 1966).

    MATH  Google Scholar 

  22. P. Flajolet and L. Vepstas, On differences of zeta values, J. Comput. Appl. Math., 220 (2008), 58–73.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Jiang and L. Xie, Pointwise simultaneous approximation for Baskakov quasi-interpolants, Acta Math. Hungar., 125 (2009), 209–226.

    Article  MathSciNet  Google Scholar 

  24. O. Kallenberg, Foundations of Modern Probability, Springer (New York, 1997).

    MATH  Google Scholar 

  25. B. Klar and A. Müller, Characterization of classes of lifetime distributions generalizing the NBUE class, J. Appl. Prob., 40 (2003), 20–32.

    Article  MATH  Google Scholar 

  26. H. B. Knoop and X. L. Zhou, The lower estimate for linear positive operators I, Constr. Approx., 11 (1995), 53–66.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. D. Lin, On a probabilistic generalization of Taylor’s theorem, Statist. Prob. Lett., 19 (1994), 239–243.

    Article  Google Scholar 

  28. F. López-Blázquez and B. Salamanca, Binomial approximation to hypergeometric probabilities, J. Stat. Plann. Inference, 87 (2000), 21–29.

    Article  MATH  Google Scholar 

  29. W. A. Massey and W. Whitt, A probabilistic generalization of Taylor’s theorem, Statist. Prob. Lett., 16 (1993), 51–54.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Norvaiša, Chain rules and p-variation, Studia Math., 149 (2002), 197–238.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Roos, Asymptotics and sharp bounds in the Poisson approximation to the Poisson-binomial distribution, Bernoulli, 5 (1999), 1021–1034.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Sangüesa, Lower estimates for centered Bernstein-type operators, Constr. Approx., 18 (2002), 145–159.

    MathSciNet  MATH  Google Scholar 

  33. F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker (New York, 2004).

    MATH  Google Scholar 

  34. Q. Wang and B-Y. Jing, An exponential nonuniform Berry–Esseen bound for self-normalized sums, Ann. Probab., 27 (1999), 2068–2088.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. E. Willmot, On higher-order properties of compound geometric distributions, J. Appl. Prob., 39 (2002), 324–340.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Adell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adell, J.A. Differential calculus for linear operators represented by finite signed measures and applications. Acta Math Hung 138, 44–82 (2013). https://doi.org/10.1007/s10474-012-0230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-012-0230-7

Key words and phrases

Mathematics Subject Classification

Navigation