Skip to main content
Log in

Approximations of ternary Jordan homomorphisms and derivations in multi-C ternary algebras

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using fixed point methods, we prove the generalized Hyers–Ulam stability of homomorphisms in multi-C ternary algebras and of derivations on multi-C ternary algebras for the additive functional equation

$$\sum_{i=1}^{m}f \bigg(mx_i+\sum_{j=1,\ j\ne i}^{m}x_j\bigg)+ f\bigg(\sum_{i=1}^{m}x_i\bigg)= 2f\bigg(\sum_{i=1}^{m}mx_i\bigg) \quad (m\in {\mathbb{N}},\ m\geqq2).$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Abramov, R. Kerner and B. Le Roy, Hypersymmetry: a Z 3 graded generalization of supersymmetry, J. Math. Phys., 38 (1997), 1650–1669.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223–237.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Cădariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math., 4 (2003).

  5. J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series 24, Oxford University Press (Oxford, 2000).

    MATH  Google Scholar 

  7. H. G. Dales and M. S. Moslehian, Stability of mappings on multi-normed spaces, Glasg. Math. J., 49 (2007), 321–332.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. G. Dales and M. E. Polyakov, Multi-normed spaces and multi-Banach algebras (preprint).

  9. P. Gǎvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436.

    Article  MathSciNet  Google Scholar 

  10. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.

    Article  MathSciNet  Google Scholar 

  11. R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity, 14 (1997), A203–A225.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. S. Moslehian, Superstability of higher derivations in multi-Banach algebras, Tamsui Oxford J. Math. Sci., 24 (2008), 417–427.

    MATH  MathSciNet  Google Scholar 

  13. M. S. Moslehian, K. Nikodem and D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl., 355 (2009), 717–724.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Park, Isomorphisms between C -ternary algebras, J. Math. Anal. Appl., 327 (2007), 101–115.

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96.

    MATH  MathSciNet  Google Scholar 

  16. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys., 160 (1994), 295–315.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. (New York, 1960).

    Google Scholar 

  19. L. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys., 37 (1996), 2553–2565.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Zettl, A characterization of ternary rings of operators, Adv. Math., 48 (1983), 117–143.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Saadati.

Additional information

Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Regan, D., Rassias, J.M. & Saadati, R. Approximations of ternary Jordan homomorphisms and derivations in multi-C ternary algebras. Acta Math Hung 134, 99–114 (2012). https://doi.org/10.1007/s10474-011-0116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-011-0116-0

Key words and phrases

2000 Mathematics Subject Classification

Navigation