Abstract
Using fixed point methods, we prove the generalized Hyers–Ulam stability of homomorphisms in multi-C ∗ ternary algebras and of derivations on multi-C ∗ ternary algebras for the additive functional equation
Similar content being viewed by others
References
V. Abramov, R. Kerner and B. Le Roy, Hypersymmetry: a Z 3 graded generalization of supersymmetry, J. Math. Phys., 38 (1997), 1650–1669.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223–237.
L. Cădariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math., 4 (2003).
J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309.
H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series 24, Oxford University Press (Oxford, 2000).
H. G. Dales and M. S. Moslehian, Stability of mappings on multi-normed spaces, Glasg. Math. J., 49 (2007), 321–332.
H. G. Dales and M. E. Polyakov, Multi-normed spaces and multi-Banach algebras (preprint).
P. Gǎvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.
R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity, 14 (1997), A203–A225.
M. S. Moslehian, Superstability of higher derivations in multi-Banach algebras, Tamsui Oxford J. Math. Sci., 24 (2008), 417–427.
M. S. Moslehian, K. Nikodem and D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl., 355 (2009), 717–724.
C. Park, Isomorphisms between C ∗-ternary algebras, J. Math. Anal. Appl., 327 (2007), 101–115.
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys., 160 (1994), 295–315.
S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. (New York, 1960).
L. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys., 37 (1996), 2553–2565.
H. Zettl, A characterization of ternary rings of operators, Adv. Math., 48 (1983), 117–143.
Author information
Authors and Affiliations
Corresponding author
Additional information
Corresponding author.
Rights and permissions
About this article
Cite this article
O’Regan, D., Rassias, J.M. & Saadati, R. Approximations of ternary Jordan homomorphisms and derivations in multi-C ∗ ternary algebras. Acta Math Hung 134, 99–114 (2012). https://doi.org/10.1007/s10474-011-0116-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-011-0116-0
Key words and phrases
- additive functional equation
- fixed point
- homomorphism in multi-C ∗ ternary algebra
- generalized Hyers–Ulam stability
- derivation on multi-C ∗ ternary algebra
- multi-normed space