Acta Mathematica Hungarica

, Volume 128, Issue 4, pp 299–306 | Cite as

Generalized continuous functions defined by generalized open sets on generalized topological spaces



We introduce generalized continuous functions defined by generalized open (= g-α-open, g-semi-open, g-preopen, g-β-open) sets in generalized topological spaces which are generalized (g, g′)-continuous functions. We investigate characterizations and relationships among such functions.

Key words and phrases

(g, g′)-continuous (α, g′)-continuous (σ, g′)-continuous (π, g′)-continuous (β, g′)-continuous 

2000 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233–254.MATHMathSciNetGoogle Scholar
  2. [2]
    Á. Császár, generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53–66.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math., 11 (1980), 209–214.MathSciNetGoogle Scholar
  6. [6]
    A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.MATHMathSciNetGoogle Scholar
  7. [7]
    A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41 (1983), 213–218.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    W. K. Min, Some Results on generalized topological spaces and generalized systems, Acta Math. Hungar., 108 (2005), 171–181.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    W. K. Min, Weak continuity on generalized topological spaces, Acta Math. Hungar., 121 (2008), 283–292.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    V. Popa and T. Noiri, On β-continuous functions, Real Anal. Exchange, 18 (1992/1993), 544–548.MathSciNetGoogle Scholar
  11. [11]
    I. L. Reilly and M. K. Vamanamurthy, On α-continuity in topological spaces, Acta. Math. Hungar., 45 (1985), 27–32.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of MathematicsKangwon National UniversityChuncheonKorea

Personalised recommendations