Skip to main content
Log in

Classical solutions of hyperbolic functional differential systems

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The paper deals with a generalized Cauchy problem for quasi-linear hyperbolic functional differential systems. The unknown function is the functional variable in the system of equations and the partial derivatives appear in the classical sense. A theorem on the local existence of a solution is proved. The initial problem is transformed into a system of functional integral equations for an unknown function and for their partial derivatives with respect to spatial variables. A method of bicharacteristics and integral inequalites are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Abolina and A. D. Myshkis, Mixed problem for semilinear system on the plane, Mat. Sb., 50 (1960), 423–442 (in Russian).

    MathSciNet  Google Scholar 

  2. P. Brandi and R. Ceppitelli, Existence, uniqueness and continuous dependence for first order nonlinear partial differential equations in a hereditary structure, Ann. Polon. Math., 47 (1986), 121–136.

    MATH  MathSciNet  Google Scholar 

  3. P. Brandi, A. Salvadori and Z. Kamont, Existence of generalized solutions of hyperbolic functional differential equations, Nonlinear Anal. TMA, 50 (2002), 919–940.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Czernous, Generalized solutions of mixed problems for first order partial functional differential equations, Ukrainian Math. J., 58 (2006), 904–936.

    Article  MathSciNet  Google Scholar 

  5. T. Człapiński, On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations, Zeit. Anal. Anwend., 10 (1991), 169–182.

    MATH  Google Scholar 

  6. T. Człapiński, Generalized solutions to boundary value problems for quasilinear hyperbolic systems of partial differential functional equations, Ann. Polon. Math., 57 (1992), 177–191.

    MATH  MathSciNet  Google Scholar 

  7. F. F. Ivanauskas, On solutions of the Cauchy problem for a system of differential integral equations, Zh. Vychisl. Mat. i Mat. Fiz., 18 (1978), 1025–1028.

    MATH  MathSciNet  Google Scholar 

  8. Z. Kamont, On the local Cauchy problem for Hamilton Jacobi equations with a functional dependence, Rocky Mountain Journ. Math., 30 (2000), 587–608.

    Article  MATH  MathSciNet  Google Scholar 

  9. Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Acad. Publ. (Dordrecht, 1999).

    MATH  Google Scholar 

  10. A. D. Myshkis and A. M. Filimonov, Continuous solutions of quasilinear hyperbolic systems in two independent variables, Differen. Urav., 17 (1981), 488–500 (in Russian).

    MATH  MathSciNet  Google Scholar 

  11. R. Nagel and E. Sinestrari, Nonlinear hyperbolic Volterra integrodifferential equations, Nonlinear Anal. TMA, 27 (1966), 167–186.

    Article  MathSciNet  Google Scholar 

  12. J. Szarski, Generalized Cauchy problem for differential-functional equations with first order partial derivatives, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys., 24 (1976), 575–580.

    MATH  MathSciNet  Google Scholar 

  13. K. Topolski, Generalized solutions of first order partial differential-functional equations in two independent variables, Atti. Sem. Mat. Fis. Univ. Modena, 39 (1991), 669–684.

    MATH  MathSciNet  Google Scholar 

  14. K. Topolski, On the existence of viscosity solutions for the differential-functional Cauchy problem, Comment. Math. Prace Mat., 39 (1999), 207–223.

    MATH  MathSciNet  Google Scholar 

  15. T. Ważewski, Sur le probléme de Cauchy relatif á un systéme d’équations aux dériveés partielles, Ann. Soc. Polon. Math., 15 (1936), 101–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Kamont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamont, Z. Classical solutions of hyperbolic functional differential systems. Acta Math Hung 124, 301–319 (2009). https://doi.org/10.1007/s10474-009-8189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-009-8189-8

Key words and phrases

2000 Mathematics Subject Classification

Navigation