Skip to main content
Log in

Estimates of the norm of the Mercer kernel matrices with discrete orthogonal transforms

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The paper is related to the lower and upper estimates of the norm for Mercer kernel matrices. We first give a presentation of the Lagrange interpolating operators from the view of reproducing kernel space. Then, we modify the Lagrange interpolating operators to make them bounded in the space of continuous function and be of the de la Vallée Poussin type. The order of approximation by the reproducing kernel spaces for the continuous functions is thus obtained, from which the lower and upper bounds of the Rayleigh entropy and the l 2-norm for some general Mercer kernel matrices are provided. As an example, we give the l 2-norm estimate for the Mercer kernel matrix presented by the Jacobi algebraic polynomials. The discussions indicate that the l 2-norm of the Mercer kernel matrices may be estimated with discrete orthogonal transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Narcowich and J. D. Ward, Norms estimates for the inverses of a general class of scattered data radial function interpolation matrices, J. Approx. Theory, 69 (1992), 84–109.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. J. Narcowich, N. Sivakumar and J. D. Ward, On condition numbers associated with radial function interpolation, J. Math. Anal. and Appl., 186 (1994), 457–485.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Jetter, J. Stǒckler and J. D. Ward, Error estimates for scattered data interpolation on spheres, Math. Comput., 68(226) (1999), 733–747.

    Article  MATH  Google Scholar 

  4. R. Schaback, Lower bounds for norms of inverses interpolation matrices for radial basis functions, J. Approx. Theory, 79 (1994), 287–306.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Wendland, Scattered Data Approximation, Cambridge University Press (Cambridge, 2005).

    MATH  Google Scholar 

  6. M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press (Cambridge, 2003).

    MATH  Google Scholar 

  7. F. J. Narcowich, N. Sivakumar and J. D. Ward, Stability results for scattered data interpolation on Euclidean spheres, Advances in Computational Mathematics, 8 (1998), 137–168.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. X. Zhou, The covering number in learning theory, J. Complexity, 18 (2002), 739–767.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory, 49 (2003), 1743–1752.

    Article  MathSciNet  Google Scholar 

  10. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337–404.

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc., 39 (2001), 1–49.

    Article  MathSciNet  Google Scholar 

  12. F. Cucker and D. X. Zhou, Learning theory: an approximation theory viewpoint, Cambridge University (New York, 2007).

    MATH  Google Scholar 

  13. F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: on the bias-variance problem, Found. Comput. Math., 2 (2002), 413–428.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Smale and D. X. Zhou, Shannon sampling and function reconstruction from point values, Bull. Amer. Math. Soc., 41 (2004), 279–305.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Ball, Eigenvalues of Euclidean distance matrices, J. Approx. Theory, 68 (1992), 74–82.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Szili, On the summability of trigonometric interpolation process, Acta Math. Hungar., 91 (2001), 131–158.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Szili, On the summability of weighted Lagrange interpolation on the roots of Jacobi polynomials, Acta Math. Hungar., 99 (2003), 209–231.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Szili and P. Vértesi, On summability of weighted Lagrange interpolation. I (General weights), Acta Math. Hungar., 101 (2003), 323–344.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Szili and P. Vértesi, On summability of weighted Lagrange interpolation. II (Freud-type weights), Acta Math. Hungar., 103 (2004), 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Szili and P. Vértesi, On summability of weighted Lagrange interpolation. III (Jacobi weights), Acta Math. Hungar., 104 (2004), 39–62.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Askey and S. Wainger, A convolution structure for Jacobi series, Amer. J. Math., 91 (1969), 463–485.

    Article  MATH  MathSciNet  Google Scholar 

  22. V. S. Pawelke, Ein Satz vom Jacksonschen Typ für algebraische Polynome, Acta Sci. Math. (Szeged), 33 (1972), 323–336.

    MATH  MathSciNet  Google Scholar 

  23. G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. (1976).

  24. J. Szabados and P. Vértesi, Interpolation of Functions, World Scientific Publishing Co. Pte. Ltd. (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sheng.

Additional information

Supported by the national NSF (No: 10871226) of P.R. China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, B. Estimates of the norm of the Mercer kernel matrices with discrete orthogonal transforms. Acta Math Hung 122, 339–355 (2009). https://doi.org/10.1007/s10474-008-8037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-008-8037-2

Key words and phrases

2000 Mathematics Subject Classification

Navigation