Skip to main content
Log in

Hyers-Ulam stability for linear equations of higher orders

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We show that, in the classes of functions with values in a real or complex Banach space, the problem of Hyers-Ulam stability of a linear functional equation of higher order (with constant coefficients) can be reduced to the problem of stability of a first order linear functional equation. As a consequence we prove that (under some weak additional assumptions) the linear equation of higher order, with constant coefficients, is stable in the case where its characteristic equation has no complex roots of module one. We also derive some results concerning solutions of the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal, B. Xu and W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl., 288 (2003), 852–869.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112 (1991), 729–732.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223–237.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Brydak, On the stability of the functional equation ϕ[f(x)] = g(x)ϕ(x) + F(x), Proc. Amer. Math. Soc., 26 (1970), 455–460.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucia, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, Springer-Verlag (New York, 2001).

    MATH  Google Scholar 

  6. G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143–190.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Ger, A survey of recent results on stability of functional equations, in: Proc. of the 4th International Conference on Functional Equations and Inequalities, Pedagogical University of Cracow (Cracow, Poland, 1994), pp. 5–36.

    Google Scholar 

  8. A. Gilányi, Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Nat. Acad. Sci. USA, 96 (1999), 10588–10590.

    Article  Google Scholar 

  9. P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc., 245 (1978), 263–277.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222–224.

    Article  MathSciNet  Google Scholar 

  11. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser (1998).

  12. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory. Reprint of the 1983 original. American Mathematical Society (Providence, RI, 1997).

    Google Scholar 

  13. I. Kocsis and Gy. Maksa, The stability of a sum form functional equation arising in information theory, Acta Math. Hungar., 79 (1998), 39–48.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Kuczma, Functional Equations in a Single Variable, Polish Scientific Publishers (Warszawa, 1968).

    MATH  Google Scholar 

  15. M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1990).

  16. Zs. Páles, Hyers-Ulam stability of the Cauchy functional equation on square-symmetric groupoids, Publ. Math. Debrecen, 58 (2001), 651–666.

    MATH  MathSciNet  Google Scholar 

  17. L. Székelyhidi, Stability properties of functional equations describing the scientific laws, J. Math. Anal. Appl., 150 (1990), 151–158.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Székelyhidi, The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc., 110 (1990), 109–115.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Trif, On the stability of a general gamma-type functional equation, Publ. Math. Debrecen, 60 (2002), 47–61.

    MATH  MathSciNet  Google Scholar 

  20. E. Turdza, On the stability of the functional equation ϕ[f(x)] = g(x)ϕ(x) + F(x), Proc. Amer. Math. Soc., 30 (1971), 484–486.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brzdęk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzdęk, J., Popa, D. & Xu, B. Hyers-Ulam stability for linear equations of higher orders. Acta Math Hung 120, 1–8 (2008). https://doi.org/10.1007/s10474-007-7069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-007-7069-3

Key words and phrases

2000 Mathematics Subject Classification

Navigation