Skip to main content
Log in

Limsup results and LIL for finite dimensional Gaussian random fields

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We establish strong limsup theorems related to the law of the iterated logarithm (LIL) for finite dimensional Gaussian random fields by using the second Borel-Cantelli lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Berman, Limit theorems for the maximum term in stationary sequence, Ann. Math. Statist., 35 (1964), 502–616.

    MathSciNet  MATH  Google Scholar 

  2. Y. K. Choi, Erdős-Rényi type laws applied to Gaussian processes, J. Math. Kyoto Univ., 31-1 (1991), 191–217.

    Google Scholar 

  3. Y. K. Choi, L. Haque and Z. Y. Lin, Liminf results on the increments of an (N,d)-Gaussian process, Acta Math. Hungar., 99 (2003), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Csáki, M. Csörgő, Z. Y. Lin and P. Révész, On infinite series of independent Ornstein-Uhlenbeck processes, Stoch. Proc. & Appl., 39 (1991), 25–44.

    Article  MATH  Google Scholar 

  5. M. Csörgő, R. Norvaisa and B. Szyszkowicz, Convergence of weighted partial sums when the limiting distribution is not necessarily random, Stoch. Proc. & Appl., 81 (1999), 81–101.

    Article  Google Scholar 

  6. M. Csörgő and P. Révész, How big are the increments of a multiparameter Wiener process? Z. Wahrsch. verw. Gebiete, 42 (1978), 1–12.

    Article  MathSciNet  Google Scholar 

  7. M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, Academic Press (New York, 1981).

    Google Scholar 

  8. M. Csörgő, B. Szyszkowicz and Q. Wang, Donsker’s theorem for self-normalized partial sum processes, Ann. Probab., 31 (2003), 1228–1240.

    Article  MathSciNet  Google Scholar 

  9. P. Deheuvels and J. Steinebach, Exact convergence rates in strong approximation laws for large increments of partial sums, Probab. Th. & Rel. Fields, 76 (1987), 369–393.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Kôno, The exact modulus of continuity for Gaussian processes taking values of a finite dimensional normed space, in: Trends in Probability and Related Analysis, SAP’96, World Scientific (Singapore, 1996), pp. 219–232.

    Google Scholar 

  11. Z. Y. Lin and C. R. Lu, Strong Limit Theorems, Science Press, Kluwer Academic Publ. (Hong Kong, 1992).

    MATH  Google Scholar 

  12. Z. Y. Lin and Y. C. Quin, On the increments of l -valued Gaussian processes, in: Asymptotic Methods in Probability and Statistics edited by B. Szyszkowicz, Elsevier Science B.V. (1998), pp. 293–302.

  13. J. Ortega, On the size of the increments of non-stationary Gaussian processes, Stoch. Proc. & Appl., 18 (1984), 47–56.

    Article  MATH  MathSciNet  Google Scholar 

  14. Q. M. Shao, Recent developments on self-normalized limit theorems, in: Asymptotic Methods in Probability and Statistics edited by B. Szyszkowicz, Elsevier Science B.V. (1998), pp. 467–480.

  15. J. Steinebach, On the increments of partial sum processes with multi-dimensional indices, Z. Wahrsch. verw. Gebiete, 63 (1983), 59–70.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. X. Zhang, A note on liminfs for increments of a fractional Brownian motion, Acta Math. Hungar., 76 (1997), 145–154.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by KRF-2003-C00098.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.K. Limsup results and LIL for finite dimensional Gaussian random fields. Acta Math Hung 116, 105–120 (2007). https://doi.org/10.1007/s10474-007-6005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-007-6005-x

Key words and phrases

2000 Mathematics Subject Classification

Navigation