Skip to main content
Log in

On number system constructions

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We investigate various number system constructions. After summarizing earlier results we prove that for a given lattice Λ and expansive matrix M: Λ → Λ if ρ(M −1) < 1/2 then there always exists a suitable digit set D for which (Λ, M, D) is a number system. Here ρ means the spectral radius of M −1. We shall prove further that if the polynomial f(x) = c 0 + c 1 x + ··· + c k x kZ[x], c k = 1 satisfies the condition |c 0| > 2 Σ k i=1 |c i | then there is a suitable digit set D for which (Z k, M, D) is a number system, where M is the companion matrix of f(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akiyama and A. Pethő, On canonical number systems, Theor. Comp. Sci., 270 (2002), 921–933.

    Article  MATH  Google Scholar 

  2. S. Akiyama and H. Rao, New criteria for canonical number systems, Acta Arithm., 111 (2004), 5–25.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Akiyama, H. Brunotte and A. Pethő, Cubic CNS polynomials, notes on a conjecture of W. J. Gilbert, J. Math. Anal. and Appl., 281 (2003), 402–415.

    MATH  MathSciNet  Google Scholar 

  4. S. Akiyama, T. Borbély, H. Brunotte and A. Pethő, On a generalization of the radix representation — a survey, in: High Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., 41 (2004), 19–27.

    Google Scholar 

  5. A. Barbé and F. von Haeseler, Binary number systems for Z k, J. of Number Theory, 117 (2006), 14–30.

    Article  MATH  Google Scholar 

  6. H. Brunotte, On trinomial bases of radix representation of algebraic integers, Acta Sci. Math. (Szeged), 67 (2001), 407–413.

    MathSciNet  Google Scholar 

  7. H. Brunotte, Characterization of CNS trinomials, Acta Sci. Math. (Szeged), 68 (2002), 673–679.

    MATH  MathSciNet  Google Scholar 

  8. P. Burcsi and A. Kovács, An algorithm checking a necessary condition of number system constructions, Annales Univ. Sci. Budapest., Sect. Comp., 25 (2005), 143–152.

    MATH  Google Scholar 

  9. G. Farkas, Location and number of periodic elements in Q(√2), Annales Univ. Sci. Budapest., Sect. Comp., 20 (2001), 133–146.

    MATH  MathSciNet  Google Scholar 

  10. G. Farkas and A. Kovács, Digital expansion in Q(√(2)), Annales Univ. Sci. Budapest., Sect. Comp., 22 (2003), 83–94.

    MATH  Google Scholar 

  11. W. J. Gilbert, Radix representation of quadratic fields, J. Math. Anal. Appl., 83 (1991), 264–274.

    Article  Google Scholar 

  12. I. Kátai, Construction of number systems in algebraic number fields, Annales Univ. Sci. Budapest., Sect. Comp., 18 (1999), 103–107.

    MATH  Google Scholar 

  13. I. Kátai, Number systems in imaginary quadratic fields, Annales Univ. Sci. Budapest., Sect. Comp., 18 (1994), 91–103.

    Google Scholar 

  14. I. Kátai, Generalized number systems in Euclidean spaces, Math. and Comp. Modelling, 38 (2003), 883–892.

    Article  MATH  Google Scholar 

  15. I. Kátai and B. Kovács, Kanonische Zahlensysteme bei reelen quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged), 42 (1980), 99–107.

    MATH  MathSciNet  Google Scholar 

  16. I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Hungar., 37 (1981), 159–164.

    Article  MATH  Google Scholar 

  17. I. Kátai and I. Környei, On number systems in algebraic number fields, Publ. Math. Debrecen, 41 (1992), 289–294.

    MATH  MathSciNet  Google Scholar 

  18. I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged), 37 (1975), 255–260.

    MATH  MathSciNet  Google Scholar 

  19. A. Kovács, On computation of attractors for invertible expanding linear operators in Z k, Publ. Math. Debrecen, 56 (2000), 97–120.

    MATH  MathSciNet  Google Scholar 

  20. A. Kovács, Generalized binary number systems, Annales Univ. Sci. Budapest., Sect. Comp., 20 (2001), 195–206.

    MATH  Google Scholar 

  21. A. Kovács, Number expansion in lattices, Math. and Comp. Modelling, 38 (2003), 909–915.

    Article  MATH  Google Scholar 

  22. A. Kovács, On expansions of Gaussian integers with non-negative digits, Math. Pannonica, 10 (1999), 177–191.

    MATH  Google Scholar 

  23. A. Kovács, Canonical expansions of integers in imaginary quadratic fields, Acta Math. Hungar., 93 (2001), 347–357.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 405–407.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Körmendi, Canonical number systems in Q(3√2), Acta Sci. Math. (Szeged), 50 (1986), 351–357.

    MATH  MathSciNet  Google Scholar 

  26. T. J. Laffey, Lectures on integer matrices, hermite.cii.fc.ul.pt/meetings/im_1997/lectures.pdf, 1–38.

  27. J. C. Lagarias and Y. Wang, Corrigendum/addendum: “Haar bases for L 2(R n) and algebraic number theory” [J. Number Theory, 57/1 (1996).] J. Number Theory, 76 (1999), 330–336.

    Article  MATH  MathSciNet  Google Scholar 

  28. C. G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Annals Math., 34 (1933), 313–316.

    Article  MathSciNet  Google Scholar 

  29. A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem, in: Proc. Computational Number Theory, Walter de Gruyter Publ. Co. (1991), pp. 31–44.

  30. K. Scheicher and J. M. Thuswaldner, On the characterization of canonical number systems, Osaka J. Math., 41 (2004), 327–351.

    MATH  MathSciNet  Google Scholar 

  31. G. Steidl, On symmetric representation of Gaussian integers, BIT, 29 (1989), 563–571.

    Article  MATH  MathSciNet  Google Scholar 

  32. O. Taussky, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math., 1 (1957), 108–113.

    MATH  MathSciNet  Google Scholar 

  33. J. M. Thuswaldner, Attractors for invertible expanding linear operators and number systems in Z 2, Publ. Math. Debrecen, 58 (2001), 423–440.

    MATH  MathSciNet  Google Scholar 

  34. A. Vince, Replicating tessellations, SIAM J. Discrete Math., 6 (1995), 191–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research was supported by the Number Theory Research Group of the Hungarian Academy of Sciences.

The research was supported by OTKA-T043657 and Bolyai Fellowship Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germán, L., Kovács, A. On number system constructions. Acta Math Hung 115, 155–167 (2007). https://doi.org/10.1007/s10474-007-5224-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-007-5224-5

Key words and phrases

2000 Mathematics Subject Classification

Navigation